contributor author | Jun Ishimoto | |
contributor author | Kenjiro Kamijo | |
date accessioned | 2017-05-09T00:10:28Z | |
date available | 2017-05-09T00:10:28Z | |
date copyright | September, 2003 | |
date issued | 2003 | |
identifier issn | 0098-2202 | |
identifier other | JFEGA4-27190#749_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/128544 | |
description abstract | The fundamental characteristics of the two-dimensional cavitating flow of liquid helium through a horizontal converging-diverging nozzle near the lambda point are numerically investigated to realize the further development and high performance of new multiphase superfluid cooling systems. First, the governing equations of the cavitating flow of liquid helium based on the unsteady thermal nonequilibrium multifluid model with generalized curvilinear coordinates system are presented, and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the cavitating flow of liquid helium though a horizontal converging-diverging nozzle is shown in detail, and it is also found that the generation of superfluid counterflow against normal fluid flow based on the thermomechanical effect is conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Numerical Analysis of Cavitating Flow of Liquid Helium in a Converging-Diverging Nozzle | |
type | Journal Paper | |
journal volume | 125 | |
journal issue | 5 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.1601253 | |
journal fristpage | 749 | |
journal lastpage | 757 | |
identifier eissn | 1528-901X | |
keywords | Flow (Dynamics) | |
keywords | Superfluidity | |
keywords | Nozzles | |
keywords | Equations | |
keywords | Helium | |
keywords | Fluids | |
keywords | Numerical analysis | |
keywords | Temperature AND Bubbles | |
tree | Journal of Fluids Engineering:;2003:;volume( 125 ):;issue: 005 | |
contenttype | Fulltext | |