YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon

    Source: Journal of Biomechanical Engineering:;2003:;volume( 125 ):;issue: 005::page 726
    Author:
    Heather Anne Lynch
    ,
    Wade Johannessen
    ,
    Jeffrey P. Wu
    ,
    Andrew Jawa
    ,
    Dawn M. Elliott
    DOI: 10.1115/1.1614819
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Tendons are exposed to complex loading scenarios that can only be quantified by mathematical models, requiring a full knowledge of tendon mechanical properties. This study measured the anisotropic, nonlinear, elastic material properties of tendon. Previous studies have primarily used constant strain-rate tensile tests to determine elastic modulus in the fiber direction. Data for Poisson’s ratio aligned with the fiber direction and all material properties transverse to the fiber direction are sparse. Additionally, it is not known whether quasi-static constant strain-rate tests represent equilibrium elastic tissue behavior. Incremental stress-relaxation and constant strain-rate tensile tests were performed on sheep flexor tendon samples aligned with the tendon fiber direction or transverse to the fiber direction to determine the anisotropic properties of toe-region modulus (E0), linear-region modulus (E), and Poisson’s ratio (ν). Among the modulus values calculated, only fiber-aligned linear-region modulus (E1) was found to be strain-rate dependent. The E1 calculated from the constant strain-rate tests were significantly greater than the value calculated from incremental stress-relaxation testing. Fiber-aligned toe-region modulus (E10=10.5±4.7 MPa) and linear-region modulus (E1=34.0±15.5 MPa) were consistently 2 orders of magnitude greater than transverse moduli (E20=0.055±0.044 MPa,E2=0.157±0.154 MPa). Poisson’s ratio values were not found to be rate-dependent in either the fiber-aligned (ν12=2.98±2.59, n=24) or transverse (ν21=0.488±0.653, n=22) directions, and average Poisson’s ratio values in the fiber-aligned direction were six times greater than in the transverse direction. The lack of strain-rate dependence of transverse properties demonstrates that slow constant strain-rate tests represent elastic properties in the transverse direction. However, the strain-rate dependence demonstrated by the fiber-aligned linear-region modulus suggests that incremental stress-relaxation tests are necessary to determine the equilibrium elastic properties of tendon, and may be more appropriate for determining the properties to be used in elastic mathematical models.
    keyword(s): Fibers , Stress , Materials properties , Tendons , Relaxation (Physics) , Testing , Biological tissues AND Poisson ratio ,
    • Download: (229.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/127953
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorHeather Anne Lynch
    contributor authorWade Johannessen
    contributor authorJeffrey P. Wu
    contributor authorAndrew Jawa
    contributor authorDawn M. Elliott
    date accessioned2017-05-09T00:09:29Z
    date available2017-05-09T00:09:29Z
    date copyrightOctober, 2003
    date issued2003
    identifier issn0148-0731
    identifier otherJBENDY-26338#726_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/127953
    description abstractTendons are exposed to complex loading scenarios that can only be quantified by mathematical models, requiring a full knowledge of tendon mechanical properties. This study measured the anisotropic, nonlinear, elastic material properties of tendon. Previous studies have primarily used constant strain-rate tensile tests to determine elastic modulus in the fiber direction. Data for Poisson’s ratio aligned with the fiber direction and all material properties transverse to the fiber direction are sparse. Additionally, it is not known whether quasi-static constant strain-rate tests represent equilibrium elastic tissue behavior. Incremental stress-relaxation and constant strain-rate tensile tests were performed on sheep flexor tendon samples aligned with the tendon fiber direction or transverse to the fiber direction to determine the anisotropic properties of toe-region modulus (E0), linear-region modulus (E), and Poisson’s ratio (ν). Among the modulus values calculated, only fiber-aligned linear-region modulus (E1) was found to be strain-rate dependent. The E1 calculated from the constant strain-rate tests were significantly greater than the value calculated from incremental stress-relaxation testing. Fiber-aligned toe-region modulus (E10=10.5±4.7 MPa) and linear-region modulus (E1=34.0±15.5 MPa) were consistently 2 orders of magnitude greater than transverse moduli (E20=0.055±0.044 MPa,E2=0.157±0.154 MPa). Poisson’s ratio values were not found to be rate-dependent in either the fiber-aligned (ν12=2.98±2.59, n=24) or transverse (ν21=0.488±0.653, n=22) directions, and average Poisson’s ratio values in the fiber-aligned direction were six times greater than in the transverse direction. The lack of strain-rate dependence of transverse properties demonstrates that slow constant strain-rate tests represent elastic properties in the transverse direction. However, the strain-rate dependence demonstrated by the fiber-aligned linear-region modulus suggests that incremental stress-relaxation tests are necessary to determine the equilibrium elastic properties of tendon, and may be more appropriate for determining the properties to be used in elastic mathematical models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
    typeJournal Paper
    journal volume125
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1614819
    journal fristpage726
    journal lastpage731
    identifier eissn1528-8951
    keywordsFibers
    keywordsStress
    keywordsMaterials properties
    keywordsTendons
    keywordsRelaxation (Physics)
    keywordsTesting
    keywordsBiological tissues AND Poisson ratio
    treeJournal of Biomechanical Engineering:;2003:;volume( 125 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian