| contributor author | Alptekin Aksan | |
| contributor author | John J. McGrath | |
| date accessioned | 2017-05-09T00:09:29Z | |
| date available | 2017-05-09T00:09:29Z | |
| date copyright | October, 2003 | |
| date issued | 2003 | |
| identifier issn | 0148-0731 | |
| identifier other | JBENDY-26338#700_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/127950 | |
| description abstract | Soft-tissue thermotherapy based on sub-ablative heating of collagenous tissues finds widespread application in medicine such as tissue welding, thermokeratoplasty, skin resurfacing, elimination of discogenic pain in the spine and treatment of joint instability. In this paper, heat-induced thermomechanical response characteristics of collagenous tissues are quantified by means of in vitro experimentation with a representative model tissue (New Zealand white rabbit patellar tendon). Three distinct heat-induced thermomechanical response regimes (defined by the rate of deformation and the variation of material properties) are identified. Arrhenius damage integral representation of collagenous tissue thermal history is shown to be adequate in establishing the master response curves for quantification of thermomechanical response for modeling purposes. The trade-off between the improved kinematical stability and compromised mechanical stability of the heated collagenous tissue is shown to be the major challenge hindering the success of subablative thermotherapies. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Thermomechanical Analysis of Soft-Tissue Thermotherapy | |
| type | Journal Paper | |
| journal volume | 125 | |
| journal issue | 5 | |
| journal title | Journal of Biomechanical Engineering | |
| identifier doi | 10.1115/1.1614816 | |
| journal fristpage | 700 | |
| journal lastpage | 708 | |
| identifier eissn | 1528-8951 | |
| keywords | Heat | |
| keywords | Stress | |
| keywords | Shrinkage (Materials) | |
| keywords | Biological tissues | |
| keywords | Cycles | |
| keywords | Heating | |
| keywords | Soft tissues | |
| keywords | Tendons | |
| keywords | Temperature | |
| keywords | Materials properties AND Deformation | |
| tree | Journal of Biomechanical Engineering:;2003:;volume( 125 ):;issue: 005 | |
| contenttype | Fulltext | |