Show simple item record

contributor authorDonna M. Meyer
contributor authorJohn A. Tichy
contributor authorProfessor and Department Chair
date accessioned2017-05-09T00:09:26Z
date available2017-05-09T00:09:26Z
date copyrightDecember, 2003
date issued2003
identifier issn0148-0731
identifier otherJBENDY-26346#777_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/127915
description abstractFormulation of a 3-D lubrication simulation of a total hip replacement in vivo is presented using a finite difference approach. The goal is to determine if hydrodynamic lubrication is taking place, how thick the joint fluid film is and over what percentage of two gait cycles, (walking and bicycling), the hydrodynamic lubricating action is occurring, if at all. The assumption of rigid surfaces is made, which is conservative in the sense that pure hydrodynamic lubrication is well known to predict thinner films than elastohydrodynamic lubrication (EHL) for the same loading. The simulation method includes addressing the angular velocity direction changes and accurate geometry configuration for the acetabular cup and femoral head components and provides a range of results for material combinations of CoCrMo-on-UHMWPE, CoCrMo-on-CoCrMo, and alumina-on-alumina components. Results are in the form of the joint fluid film pressure distributions, load components and film thicknesses of the joint fluid, for the gait cycles of walking and bicycling. Results show hydrodynamic action occurs in only about 10% of a walking gait cycle and throughout nearly 90% of a bicycling gait. During the 10% of the walking cycle that develops hydrodynamic lubrication, the minimum fluid film thicknesses are determined to be between 0.05 μm and 1.1 μm, while the range of film thicknesses for bicycling is between 0.1 μm and 1.4 μm, and occurs over 90% of the bicycling gait. Pressure distributions for these same periods are in the range of 2 MPa to 870 MPa for walking and 1 MPa to 24 MPa for bicycling.
publisherThe American Society of Mechanical Engineers (ASME)
title3-D Model of a Total Hip Replacement In Vivo Providing Hydrodynamic Pressure and Film Thickness for Walking and Bicycling
typeJournal Paper
journal volume125
journal issue6
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.1631585
journal fristpage777
journal lastpage784
identifier eissn1528-8951
keywordsPressure
keywordsLubrication
keywordsStress
keywordsCycles
keywordsFilm thickness
keywordsFluid films
keywordsHip joint prostheses
keywordsSimulation
keywordsThickness
keywordsOptimization
keywordsGeometry AND Fluids
treeJournal of Biomechanical Engineering:;2003:;volume( 125 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record