Show simple item record

contributor authorG. M. L. Gladwell
contributor authorM. M. Khonsari
contributor authorY. M. Ram
date accessioned2017-05-09T00:09:20Z
date available2017-05-09T00:09:20Z
date copyrightJuly, 2003
date issued2003
identifier issn0021-8936
identifier otherJAMCAV-26561#561_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/127847
description abstractDepending on the speed of rotation, a gyroscopic system may lose or gain stability. The paper characterizes the critical angular velocities at which a conservative gyroscopic system may change from a stable to an unstable state, and vice versa, in terms of the eigenvalues of a high-order matrix pencil. A numerical method for evaluation of all possible candidates for such critical velocities is developed.
publisherThe American Society of Mechanical Engineers (ASME)
titleStability Boundaries of a Conservative Gyroscopic System
typeJournal Paper
journal volume70
journal issue4
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.1574062
journal fristpage561
journal lastpage567
identifier eissn1528-9036
keywordsStability AND Eigenvalues
treeJournal of Applied Mechanics:;2003:;volume( 070 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record