YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spectral Analysis of Nonlinear Water Waves Based on the Hilbert-Huang Transformation

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2002:;volume( 124 ):;issue: 001::page 22
    Author:
    T. Schlurmann
    ,
    Postdoctoral Researcher
    DOI: 10.1115/1.1423911
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The Hilbert-Huang transformation (HHT) is a new method for analyzing nonlinear and non-stationary data series. The central idea behind the HHT is the so-called empirical mode decomposition (EMD) that numerically decomposes a time-dependent signal into its own underlying characteristic modes. Applying the Hilbert transformation (HT) to each of these disintegrated intrinsic mode function (IMF) subsequently provides the Hilbert amplitude or energy spectrum—producing more accurate spectra and proposing in all probability entirely new physical insights of nonlinear and nonstationary processes. The present paper describes the application of the HHT concerning the spectral frequency analysis of nonlinear transient water waves.
    • Download: (571.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spectral Analysis of Nonlinear Water Waves Based on the Hilbert-Huang Transformation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/127307
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorT. Schlurmann
    contributor authorPostdoctoral Researcher
    date accessioned2017-05-09T00:08:23Z
    date available2017-05-09T00:08:23Z
    date copyrightFebruary, 2002
    date issued2002
    identifier issn0892-7219
    identifier otherJMOEEX-28182#22_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/127307
    description abstractThe Hilbert-Huang transformation (HHT) is a new method for analyzing nonlinear and non-stationary data series. The central idea behind the HHT is the so-called empirical mode decomposition (EMD) that numerically decomposes a time-dependent signal into its own underlying characteristic modes. Applying the Hilbert transformation (HT) to each of these disintegrated intrinsic mode function (IMF) subsequently provides the Hilbert amplitude or energy spectrum—producing more accurate spectra and proposing in all probability entirely new physical insights of nonlinear and nonstationary processes. The present paper describes the application of the HHT concerning the spectral frequency analysis of nonlinear transient water waves.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSpectral Analysis of Nonlinear Water Waves Based on the Hilbert-Huang Transformation
    typeJournal Paper
    journal volume124
    journal issue1
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.1423911
    journal fristpage22
    journal lastpage27
    identifier eissn1528-896X
    treeJournal of Offshore Mechanics and Arctic Engineering:;2002:;volume( 124 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian