Show simple item record

contributor authorA. D. Rao
contributor authorG. S. Samuelsen
date accessioned2017-05-09T00:07:26Z
date available2017-05-09T00:07:26Z
date copyrightJuly, 2002
date issued2002
identifier issn1528-8919
identifier otherJETPEZ-26814#503_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/126736
description abstractThe emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance and directing design and development. A description and application of the recently developed tool for analyzing tubular SOFC based systems is presented. The capabilities of this tool include an analytical model for the tubular SOFC derived from first principles and the secondary equipment required to analyze hybrid power plants. Examples of such secondary equipment are gas turbine, reformer, partial oxidation reactor, shift reactor, humidifier, steam turbines, compressor, gas expander, heat exchanger, and pump. A “controller” is included which is essential for modeling systems to automatically iterate in order to meet the desired process or system design criteria. Another important capability that is included is to be able to arrange the various components or modules as defined by the user in order to configure different hybrid systems. Analysis of the hybrid cycle as originally proposed by Westinghouse (SureCell TM) indicates that the thermal efficiency of the cycle is quite insensitive to the pressure ratio, increasing from 65.5 percent to 66.6 percent on a lower calorific value of the fuel as the pressure ratio decreases from 15 to 6.5.
publisherThe American Society of Mechanical Engineers (ASME)
titleAnalysis Strategies for Tubular Solid Oxide Fuel Cell Based Hybrid Systems
typeJournal Paper
journal volume124
journal issue3
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.1413462
journal fristpage503
journal lastpage509
identifier eissn0742-4795
keywordsPressure
keywordsFuels
keywordsSolid oxide fuel cells
keywordsCycles
keywordsCompressors
keywordsFuel cells
keywordsoxidation
keywordsIndustrial plants
keywordsGas turbines
keywordsTemperature
keywordsFlow (Dynamics) AND Design
treeJournal of Engineering for Gas Turbines and Power:;2002:;volume( 124 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record