contributor author | G. James Van Fossen | |
contributor author | Ronald S. Bunker | |
date accessioned | 2017-05-09T00:06:21Z | |
date available | 2017-05-09T00:06:21Z | |
date copyright | January, 2001 | |
date issued | 2001 | |
identifier issn | 0889-504X | |
identifier other | JOTUEI-28686#140_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/126091 | |
description abstract | Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise-averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half-scale model of a can-type combustor from a low NOx, ground-based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane-type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counterclockwise direction (facing downstream). A five-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36 deg at the outer edges of the rectangular test section. Hot-wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid-generated turbulence. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor | |
type | Journal Paper | |
journal volume | 123 | |
journal issue | 1 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.1330270 | |
journal fristpage | 140 | |
journal lastpage | 146 | |
identifier eissn | 1528-8900 | |
keywords | Flow (Dynamics) | |
keywords | Heat transfer | |
keywords | Turbulence | |
keywords | Wire | |
keywords | Combustion chambers | |
keywords | Probes | |
keywords | Temperature | |
keywords | Measurement AND Reynolds number | |
tree | Journal of Turbomachinery:;2001:;volume( 123 ):;issue: 001 | |
contenttype | Fulltext | |