YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor

    Source: Journal of Turbomachinery:;2001:;volume( 123 ):;issue: 001::page 140
    Author:
    G. James Van Fossen
    ,
    Ronald S. Bunker
    DOI: 10.1115/1.1330270
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise-averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half-scale model of a can-type combustor from a low NOx, ground-based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane-type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counterclockwise direction (facing downstream). A five-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36 deg at the outer edges of the rectangular test section. Hot-wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid-generated turbulence.
    keyword(s): Flow (Dynamics) , Heat transfer , Turbulence , Wire , Combustion chambers , Probes , Temperature , Measurement AND Reynolds number ,
    • Download: (163.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/126091
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorG. James Van Fossen
    contributor authorRonald S. Bunker
    date accessioned2017-05-09T00:06:21Z
    date available2017-05-09T00:06:21Z
    date copyrightJanuary, 2001
    date issued2001
    identifier issn0889-504X
    identifier otherJOTUEI-28686#140_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/126091
    description abstractHeat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise-averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half-scale model of a can-type combustor from a low NOx, ground-based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane-type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counterclockwise direction (facing downstream). A five-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36 deg at the outer edges of the rectangular test section. Hot-wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid-generated turbulence.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAugmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor
    typeJournal Paper
    journal volume123
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.1330270
    journal fristpage140
    journal lastpage146
    identifier eissn1528-8900
    keywordsFlow (Dynamics)
    keywordsHeat transfer
    keywordsTurbulence
    keywordsWire
    keywordsCombustion chambers
    keywordsProbes
    keywordsTemperature
    keywordsMeasurement AND Reynolds number
    treeJournal of Turbomachinery:;2001:;volume( 123 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian