YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Engineering Approach to Hertzian Contact Elasticity—Part I

    Source: Journal of Tribology:;2001:;volume( 123 ):;issue: 003::page 582
    Author:
    Luc Houpert
    ,
    Scientist and Manager
    DOI: 10.1115/1.1308043
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Results given in this paper are threefold. In the case of Hertzian line contact, a new load/deformation relationship is derived analytically and use is made of the thickness of the outer race section. A minor effect of the section thickness is shown. The exponent on the deformation is 1.074 (instead of 1.1 usually accepted). Results calculated with the new relationship are successfully compared to results calculated with other published relationships and also are compared successfully to some available experimental results. For the case of point contact, useful relationships, obtained by curve-fitting, are given to calculate easily the load versus deformation, maximum Hertzian pressure and ellipse contact dimension as a function of a dimensionless load parameter and ratio k of equivalent radii (instead of sum of curvatures and elliptical integrals before). A large range of k is covered, from 0.05 (found at roller rib contact) to 13,000 to cover all bearing cases, from ball bearings to spherical and tapered roller bearings. Finally, an important analytical relationship, based on curve-fitting, also is suggested to describe a smooth transition from point contact to line contact as the load increases. It is recommended to define bearing setting and bearing preload with the suggested relationship.
    keyword(s): Pressure , Elasticity , Deformation , Stress , Rollers , Bearings , Fittings , Thickness AND Dimensions ,
    • Download: (175.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Engineering Approach to Hertzian Contact Elasticity—Part I

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/125919
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorLuc Houpert
    contributor authorScientist and Manager
    date accessioned2017-05-09T00:06:02Z
    date available2017-05-09T00:06:02Z
    date copyrightJuly, 2001
    date issued2001
    identifier issn0742-4787
    identifier otherJOTRE9-28698#582_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/125919
    description abstractResults given in this paper are threefold. In the case of Hertzian line contact, a new load/deformation relationship is derived analytically and use is made of the thickness of the outer race section. A minor effect of the section thickness is shown. The exponent on the deformation is 1.074 (instead of 1.1 usually accepted). Results calculated with the new relationship are successfully compared to results calculated with other published relationships and also are compared successfully to some available experimental results. For the case of point contact, useful relationships, obtained by curve-fitting, are given to calculate easily the load versus deformation, maximum Hertzian pressure and ellipse contact dimension as a function of a dimensionless load parameter and ratio k of equivalent radii (instead of sum of curvatures and elliptical integrals before). A large range of k is covered, from 0.05 (found at roller rib contact) to 13,000 to cover all bearing cases, from ball bearings to spherical and tapered roller bearings. Finally, an important analytical relationship, based on curve-fitting, also is suggested to describe a smooth transition from point contact to line contact as the load increases. It is recommended to define bearing setting and bearing preload with the suggested relationship.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Engineering Approach to Hertzian Contact Elasticity—Part I
    typeJournal Paper
    journal volume123
    journal issue3
    journal titleJournal of Tribology
    identifier doi10.1115/1.1308043
    journal fristpage582
    journal lastpage588
    identifier eissn1528-8897
    keywordsPressure
    keywordsElasticity
    keywordsDeformation
    keywordsStress
    keywordsRollers
    keywordsBearings
    keywordsFittings
    keywordsThickness AND Dimensions
    treeJournal of Tribology:;2001:;volume( 123 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian