YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nanomechanical and Nanotribological Properties of Carbon, Chromium, and Titanium Carbide Ultrathin Films

    Source: Journal of Tribology:;2001:;volume( 123 ):;issue: 004::page 717
    Author:
    W. Lu
    ,
    K. Komvopoulos
    ,
    Professor Fellow ASME
    DOI: 10.1115/1.1330737
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The nanomechanical and nanotribological properties of 10-nm-thick amorphous carbon (a-C) films and 100-nm-thick polycrystalline chromium (Cr) and titanium carbide (TiC) films were investigated using a surface force microscope (SFM). The films were deposited on Si(100) substrates by radio frequency (RF) sputtering and pulsed laser deposition (PLD) techniques. The experiments were performed with diamond tips of nominal radius of curvature equal to 20 nm, 100 nm, and 20 μm, and contact forces in the range of 3–400 μN. Nanoindentation experiments performed with the 20-nm-radius pyramidal diamond tip revealed that, for a 20 μN maximum contact force, the deformation of the a-C films was purely elastic, whereas that of the Cr film and Si(100) substrate was predominantly plastic. Although the RF sputtered a-C films and the PLD films of TiC exhibited similar nanohardness (∼40 GPa), the a-C films showed a superior nanowear resistance. Despite the identical hardness-to-elastic modulus ratio values of the RF sputtered polycrystalline Cr films and the single-crystal Si(100) substrate, the Cr films demonstrated a greater nanowear resistance. The wear behavior of the films is interpreted in terms of the relative specific energy dissipated during the nanowear process. Results from nanowear tests show that, in addition to the nanohardness and hardness-to-elastic modulus ratio, the microstructure, type of atomic bonding, and deposition process affecting the composition and residual stress in the films influence the nanowear resistance of the films.
    • Download: (347.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nanomechanical and Nanotribological Properties of Carbon, Chromium, and Titanium Carbide Ultrathin Films

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/125875
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorW. Lu
    contributor authorK. Komvopoulos
    contributor authorProfessor Fellow ASME
    date accessioned2017-05-09T00:05:59Z
    date available2017-05-09T00:05:59Z
    date copyrightOctober, 2001
    date issued2001
    identifier issn0742-4787
    identifier otherJOTRE9-28701#717_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/125875
    description abstractThe nanomechanical and nanotribological properties of 10-nm-thick amorphous carbon (a-C) films and 100-nm-thick polycrystalline chromium (Cr) and titanium carbide (TiC) films were investigated using a surface force microscope (SFM). The films were deposited on Si(100) substrates by radio frequency (RF) sputtering and pulsed laser deposition (PLD) techniques. The experiments were performed with diamond tips of nominal radius of curvature equal to 20 nm, 100 nm, and 20 μm, and contact forces in the range of 3–400 μN. Nanoindentation experiments performed with the 20-nm-radius pyramidal diamond tip revealed that, for a 20 μN maximum contact force, the deformation of the a-C films was purely elastic, whereas that of the Cr film and Si(100) substrate was predominantly plastic. Although the RF sputtered a-C films and the PLD films of TiC exhibited similar nanohardness (∼40 GPa), the a-C films showed a superior nanowear resistance. Despite the identical hardness-to-elastic modulus ratio values of the RF sputtered polycrystalline Cr films and the single-crystal Si(100) substrate, the Cr films demonstrated a greater nanowear resistance. The wear behavior of the films is interpreted in terms of the relative specific energy dissipated during the nanowear process. Results from nanowear tests show that, in addition to the nanohardness and hardness-to-elastic modulus ratio, the microstructure, type of atomic bonding, and deposition process affecting the composition and residual stress in the films influence the nanowear resistance of the films.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNanomechanical and Nanotribological Properties of Carbon, Chromium, and Titanium Carbide Ultrathin Films
    typeJournal Paper
    journal volume123
    journal issue4
    journal titleJournal of Tribology
    identifier doi10.1115/1.1330737
    journal fristpage717
    journal lastpage724
    identifier eissn1528-8897
    treeJournal of Tribology:;2001:;volume( 123 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian