YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Physical Modeling of Wind Load on a Floating Offshore Structure

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2001:;volume( 123 ):;issue: 004::page 170
    Author:
    Bertrand Bobillier
    ,
    Subrata Chakrabarti
    ,
    Poul Christiansen
    DOI: 10.1115/1.1410102
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Wind is an important environmental parameter that influences the design of floating offshore structures, particularly in harsh environment. Because wind spectrum is broad-banded, computation of wind load on the floating structure is complicated. Moreover, the wind-induced slow-drift oscillation is an important design criterion. Simulated environment in a model test often includes wind effect. Accurate modeling of wind in a laboratory environment is, however, a difficult task. The wind tunnel provides a steady load on the superstructure quite accurately, but fails to show the effect of the changing free surface as well as dynamic effect. Therefore, simultaneous simulation of wind in the wave basin is desirable. A weight representing the steady wind load with a string and pulley arrangement at the center of the application of the superstructure is inadequate since it fails to simulate the variation of the wind spectrum. The generation and control of the design wind spectrum by an overhead bank of fans facing the model superstructure is an extremely difficult task due to large windage area. This paper presents an accurate and highly controllable method of the generation of variable wind simultaneously with waves and current in the wave basin that can be used with a variety of floating structure model. The concept was originally proposed by Kvaerner Oil & Gas International and implemented by the offshore model basin (OMB). In this method, a fan equipped with a constant-speed motor and blades with an adjustable pitch angle is directly mounted on the model deck above water. A digital signal generated from the specified wind spectrum is used to run the fan much like the wavemaker. A feedback system ensures the proper generation of the wind with the model motion. The method was successfully applied in several model tests of deepwater floating structures in which broad-banded wind spectra were generated. An example from an earlier such test is given here. The importance of the effect of the simulated wind spectrum on floating structures should be clear to a design engineer from this example.
    keyword(s): Spectra (Spectroscopy) , Stress , Offshore structures , Wind AND Modeling ,
    • Download: (291.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Physical Modeling of Wind Load on a Floating Offshore Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/125673
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorBertrand Bobillier
    contributor authorSubrata Chakrabarti
    contributor authorPoul Christiansen
    date accessioned2017-05-09T00:05:39Z
    date available2017-05-09T00:05:39Z
    date copyrightNovember, 2001
    date issued2001
    identifier issn0892-7219
    identifier otherJMOEEX-28177#170_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/125673
    description abstractWind is an important environmental parameter that influences the design of floating offshore structures, particularly in harsh environment. Because wind spectrum is broad-banded, computation of wind load on the floating structure is complicated. Moreover, the wind-induced slow-drift oscillation is an important design criterion. Simulated environment in a model test often includes wind effect. Accurate modeling of wind in a laboratory environment is, however, a difficult task. The wind tunnel provides a steady load on the superstructure quite accurately, but fails to show the effect of the changing free surface as well as dynamic effect. Therefore, simultaneous simulation of wind in the wave basin is desirable. A weight representing the steady wind load with a string and pulley arrangement at the center of the application of the superstructure is inadequate since it fails to simulate the variation of the wind spectrum. The generation and control of the design wind spectrum by an overhead bank of fans facing the model superstructure is an extremely difficult task due to large windage area. This paper presents an accurate and highly controllable method of the generation of variable wind simultaneously with waves and current in the wave basin that can be used with a variety of floating structure model. The concept was originally proposed by Kvaerner Oil & Gas International and implemented by the offshore model basin (OMB). In this method, a fan equipped with a constant-speed motor and blades with an adjustable pitch angle is directly mounted on the model deck above water. A digital signal generated from the specified wind spectrum is used to run the fan much like the wavemaker. A feedback system ensures the proper generation of the wind with the model motion. The method was successfully applied in several model tests of deepwater floating structures in which broad-banded wind spectra were generated. An example from an earlier such test is given here. The importance of the effect of the simulated wind spectrum on floating structures should be clear to a design engineer from this example.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePhysical Modeling of Wind Load on a Floating Offshore Structure
    typeJournal Paper
    journal volume123
    journal issue4
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.1410102
    journal fristpage170
    journal lastpage176
    identifier eissn1528-896X
    keywordsSpectra (Spectroscopy)
    keywordsStress
    keywordsOffshore structures
    keywordsWind AND Modeling
    treeJournal of Offshore Mechanics and Arctic Engineering:;2001:;volume( 123 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian