YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Complementary Sensor Approach to Reverse Engineering

    Source: Journal of Manufacturing Science and Engineering:;2001:;volume( 123 ):;issue: 001::page 74
    Author:
    C. Bradley
    ,
    V. Chan
    DOI: 10.1115/1.1349556
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A complementary sensor technique for reverse engineering objects that are represented by a three-dimensional (3D) cloud data set is reported. The research focuses on objects whose surface form is manifest as a set of distinct free-form surface patches, each of which is enclosed by a boundary. The method incorporates three stages: (1) laser scanner-based digitization of all the free-form surface patches, (2) touch probe-based digitization of the surface patch boundaries, and (3) modeling of both data sets to create a complete B-spline curve and surface representation of the object. The patch boundary data, defined by the touch probe, is employed to segment the free-form surface data into the constituent patches. Furthermore, the boundary data is incorporated within a B-spline surface fitting process to constrain the boundaries. The two sensors functionally complement each other; the range sensor provides the required dense resolution of 3D points on the free-form surfaces whereas the touch probe accurately defines the patch boundaries. The method is ideal for objects comprised of both functional engineering features, e.g. bearing holes or precise mounting locators, and aesthetic features, such as hand grips or part covers. The touch probe is also ideal for digitizing boundaries where occlusion prevents the use of an optical digitizer. The laser-based sensor has an accuracy specification of 50 microns (over a 40-mm depth of field) whereas the touch probe is accurate to 4 microns over a 25-mm measurement length. An example part is modeled that has multiple free-form patches (defining the part’s outer cover) that require a large cloud data set for complete coverage. The corresponding patch boundaries accurately define the location of critical part mounting locations that require the touch probe’s precision.
    keyword(s): Sensors , Reverse engineering , Probes , Lasers , Surface fitting , Splines AND Coordinate measuring machines ,
    • Download: (804.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Complementary Sensor Approach to Reverse Engineering

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/125565
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorC. Bradley
    contributor authorV. Chan
    date accessioned2017-05-09T00:05:27Z
    date available2017-05-09T00:05:27Z
    date copyrightFebruary, 2001
    date issued2001
    identifier issn1087-1357
    identifier otherJMSEFK-27456#74_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/125565
    description abstractA complementary sensor technique for reverse engineering objects that are represented by a three-dimensional (3D) cloud data set is reported. The research focuses on objects whose surface form is manifest as a set of distinct free-form surface patches, each of which is enclosed by a boundary. The method incorporates three stages: (1) laser scanner-based digitization of all the free-form surface patches, (2) touch probe-based digitization of the surface patch boundaries, and (3) modeling of both data sets to create a complete B-spline curve and surface representation of the object. The patch boundary data, defined by the touch probe, is employed to segment the free-form surface data into the constituent patches. Furthermore, the boundary data is incorporated within a B-spline surface fitting process to constrain the boundaries. The two sensors functionally complement each other; the range sensor provides the required dense resolution of 3D points on the free-form surfaces whereas the touch probe accurately defines the patch boundaries. The method is ideal for objects comprised of both functional engineering features, e.g. bearing holes or precise mounting locators, and aesthetic features, such as hand grips or part covers. The touch probe is also ideal for digitizing boundaries where occlusion prevents the use of an optical digitizer. The laser-based sensor has an accuracy specification of 50 microns (over a 40-mm depth of field) whereas the touch probe is accurate to 4 microns over a 25-mm measurement length. An example part is modeled that has multiple free-form patches (defining the part’s outer cover) that require a large cloud data set for complete coverage. The corresponding patch boundaries accurately define the location of critical part mounting locations that require the touch probe’s precision.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Complementary Sensor Approach to Reverse Engineering
    typeJournal Paper
    journal volume123
    journal issue1
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.1349556
    journal fristpage74
    journal lastpage82
    identifier eissn1528-8935
    keywordsSensors
    keywordsReverse engineering
    keywordsProbes
    keywordsLasers
    keywordsSurface fitting
    keywordsSplines AND Coordinate measuring machines
    treeJournal of Manufacturing Science and Engineering:;2001:;volume( 123 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian