YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hemodynamic Factors at the Distal End-to-Side Anastomosis of a Bypass Graft With Different POS:DOS Flow Ratios

    Source: Journal of Biomechanical Engineering:;2001:;volume( 123 ):;issue: 003::page 270
    Author:
    Xue-Mei Li
    ,
    Stanley E. Rittgers
    DOI: 10.1115/1.1372323
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A pulsatile flow in vitro model of the distal end-to-side anastomosis of an arterial bypass graft was used to examine the effects that different flow ratios between the proximal outlet segment (POS) and the distal outlet segment (DOS) have on the flow patterns and the distributions of hemodynamic factors in the anastomosis. Amberlite particles were tracked by flow visualization to determine overall flow patterns and velocity measurements were made with Laser Doppler anemometry (LDA) to obtain detailed hemodynamic factors along the artery floor and the graft hood regions. These factors included wall shear stress (WSS), spatial wall shear stress gradient (WSSG), and oscillatory index (OSI). Statistical analysis was used to compare these hemodynamic factors between cases having different POS:DOS flow ratios (Case 1—0:100, Case 2—25:75, Case 3—50:50). The results showed that changes in POS:DOS flow ratios had a great influence on the flow patterns in the anastomosis. With an increase in proximal outlet flow, the range of location of the stagnation point along the artery floor decreased, while the extent of flow separation along the graft hood increased. The statistical results showed that there were significant differences (p<0.05) for the mean WSS between cases along the graft hood, but no significant differences were detected along the artery floor. There were no significant differences for the spatial WSSG along both the artery floor and the graft hood. However, there were significant differences (p<0.05) in the mean OSI between Cases 1 and 2 and between Cases 1 and 3 both along the artery floor and along the graft hood. Comparing these mechanical factors with histological findings of intimal hyperplasia formation obtained by previous canine studies, the results of the statistical analysis suggest that regions exposed to a combination of low mean WSS and high OSI may be most prone to the formation of intimal hyperplasia.
    keyword(s): Flow (Dynamics) , Hemodynamics , Flow visualization , Shear (Mechanics) AND Flow separation ,
    • Download: (406.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hemodynamic Factors at the Distal End-to-Side Anastomosis of a Bypass Graft With Different POS:DOS Flow Ratios

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/124825
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorXue-Mei Li
    contributor authorStanley E. Rittgers
    date accessioned2017-05-09T00:04:14Z
    date available2017-05-09T00:04:14Z
    date copyrightJune, 2001
    date issued2001
    identifier issn0148-0731
    identifier otherJBENDY-26162#270_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/124825
    description abstractA pulsatile flow in vitro model of the distal end-to-side anastomosis of an arterial bypass graft was used to examine the effects that different flow ratios between the proximal outlet segment (POS) and the distal outlet segment (DOS) have on the flow patterns and the distributions of hemodynamic factors in the anastomosis. Amberlite particles were tracked by flow visualization to determine overall flow patterns and velocity measurements were made with Laser Doppler anemometry (LDA) to obtain detailed hemodynamic factors along the artery floor and the graft hood regions. These factors included wall shear stress (WSS), spatial wall shear stress gradient (WSSG), and oscillatory index (OSI). Statistical analysis was used to compare these hemodynamic factors between cases having different POS:DOS flow ratios (Case 1—0:100, Case 2—25:75, Case 3—50:50). The results showed that changes in POS:DOS flow ratios had a great influence on the flow patterns in the anastomosis. With an increase in proximal outlet flow, the range of location of the stagnation point along the artery floor decreased, while the extent of flow separation along the graft hood increased. The statistical results showed that there were significant differences (p<0.05) for the mean WSS between cases along the graft hood, but no significant differences were detected along the artery floor. There were no significant differences for the spatial WSSG along both the artery floor and the graft hood. However, there were significant differences (p<0.05) in the mean OSI between Cases 1 and 2 and between Cases 1 and 3 both along the artery floor and along the graft hood. Comparing these mechanical factors with histological findings of intimal hyperplasia formation obtained by previous canine studies, the results of the statistical analysis suggest that regions exposed to a combination of low mean WSS and high OSI may be most prone to the formation of intimal hyperplasia.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHemodynamic Factors at the Distal End-to-Side Anastomosis of a Bypass Graft With Different POS:DOS Flow Ratios
    typeJournal Paper
    journal volume123
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1372323
    journal fristpage270
    journal lastpage276
    identifier eissn1528-8951
    keywordsFlow (Dynamics)
    keywordsHemodynamics
    keywordsFlow visualization
    keywordsShear (Mechanics) AND Flow separation
    treeJournal of Biomechanical Engineering:;2001:;volume( 123 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian