YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cryosurgery of Normal and Tumor Tissue in the Dorsal Skin Flap Chamber: Part II—Injury Response

    Source: Journal of Biomechanical Engineering:;2001:;volume( 123 ):;issue: 004::page 310
    Author:
    Nathan E. Hoffmann
    ,
    John C. Bischof
    DOI: 10.1115/1.1385839
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: It has been hypothesized that vascular injury may be an important mechanism of cryosurgical destruction in addition to direct cellular destruction. In this study, we report correlation of tissue and vascular injury after cryosurgery to the temperature history during cryosurgery in an in vivo microvascular preparation. The dorsal skin flap chamber, implanted in the Copenhagen rat, was chosen as the cryosurgical model. Cryosurgery was performed in the chamber on either normal skin or tumor tissue propagated from an AT-1 Dunning rat prostate tumor, as described in a companion paper (Hoffmann and Bischof, 2001). The vasculature was then viewed at 3 and 7 days after cryoinjury under brightfield and FITC-labeled dextran contrast enhancement to assess the vascular injury. The results showed that there was complete destruction of the vasculature in the center of the lesion and a gradual return to normal patency moving radially outward. Histologic examination showed a band of inflammation near the edge of a large necrotic region at both 3 and 7 days after cryosurgery. The area of vascular injury observed with FITC-labeled dextran quantitatively corresponded to the area of necrosis observed in histologic section, and the size of the lesion for tumor and normal tissue was similar at 3 days post cryosurgery. At 7 days after cryosurgery, the lesion was smaller for both tissues, with the normal tissue lesion being much smaller than the tumor tissue lesion. A comparison of experimental injury data to the thermal model validated in a companion paper (Hoffmann and Bischof, 2001) suggested that the minimum temperature required for causing necrosis was −15.6±4.3°C in tumor tissue and −19.0±4.4°C in normal tissue. The other thermal parameters manifested at the edge of the lesion included a cooling rate of ∼28°C/min, 0 hold time, and a ∼9°C/min thawing rate. The conditions at the edge of the lesion are much less severe than the thermal conditions required for direct cellular destruction of AT-1 cells and tissues in vitro. These results are consistent with the hypothesis that vascular-mediated injury is responsible for the majority of injury at the edge of the frozen region in microvascular perfused tissue.
    keyword(s): Biological tissues , Skin , Tumors , Wounds , Freezing AND Temperature ,
    • Download: (451.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cryosurgery of Normal and Tumor Tissue in the Dorsal Skin Flap Chamber: Part II—Injury Response

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/124805
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorNathan E. Hoffmann
    contributor authorJohn C. Bischof
    date accessioned2017-05-09T00:04:13Z
    date available2017-05-09T00:04:13Z
    date copyrightAugust, 2001
    date issued2001
    identifier issn0148-0731
    identifier otherJBENDY-26180#310_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/124805
    description abstractIt has been hypothesized that vascular injury may be an important mechanism of cryosurgical destruction in addition to direct cellular destruction. In this study, we report correlation of tissue and vascular injury after cryosurgery to the temperature history during cryosurgery in an in vivo microvascular preparation. The dorsal skin flap chamber, implanted in the Copenhagen rat, was chosen as the cryosurgical model. Cryosurgery was performed in the chamber on either normal skin or tumor tissue propagated from an AT-1 Dunning rat prostate tumor, as described in a companion paper (Hoffmann and Bischof, 2001). The vasculature was then viewed at 3 and 7 days after cryoinjury under brightfield and FITC-labeled dextran contrast enhancement to assess the vascular injury. The results showed that there was complete destruction of the vasculature in the center of the lesion and a gradual return to normal patency moving radially outward. Histologic examination showed a band of inflammation near the edge of a large necrotic region at both 3 and 7 days after cryosurgery. The area of vascular injury observed with FITC-labeled dextran quantitatively corresponded to the area of necrosis observed in histologic section, and the size of the lesion for tumor and normal tissue was similar at 3 days post cryosurgery. At 7 days after cryosurgery, the lesion was smaller for both tissues, with the normal tissue lesion being much smaller than the tumor tissue lesion. A comparison of experimental injury data to the thermal model validated in a companion paper (Hoffmann and Bischof, 2001) suggested that the minimum temperature required for causing necrosis was −15.6±4.3°C in tumor tissue and −19.0±4.4°C in normal tissue. The other thermal parameters manifested at the edge of the lesion included a cooling rate of ∼28°C/min, 0 hold time, and a ∼9°C/min thawing rate. The conditions at the edge of the lesion are much less severe than the thermal conditions required for direct cellular destruction of AT-1 cells and tissues in vitro. These results are consistent with the hypothesis that vascular-mediated injury is responsible for the majority of injury at the edge of the frozen region in microvascular perfused tissue.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCryosurgery of Normal and Tumor Tissue in the Dorsal Skin Flap Chamber: Part II—Injury Response
    typeJournal Paper
    journal volume123
    journal issue4
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1385839
    journal fristpage310
    journal lastpage316
    identifier eissn1528-8951
    keywordsBiological tissues
    keywordsSkin
    keywordsTumors
    keywordsWounds
    keywordsFreezing AND Temperature
    treeJournal of Biomechanical Engineering:;2001:;volume( 123 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian