Experimental and Finite Element Comparison of Various Fixation Designs in Combined LoadsSource: Journal of Biomechanical Engineering:;2001:;volume( 123 ):;issue: 005::page 391DOI: 10.1115/1.1395572Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The short- and long-term successes of tibial cementless implants depend on the initial fixation stability often provided by posts and screws. In this work, a metallic plate was fixed to a polyurethane block with either two bone screws, two smooth-surfaced posts, or two novel smooth-surfaced posts with adjustable inclinations. For this last case, inclinations of 0, 1.5, and 3 deg were considered following insertion. A load of 1031 N was eccentrically applied on the plate at an angle of ∼14 deg, which resulted in a 1000 N axial compressive force and a 250 N shear force. The response was measured under static and repetitive loading up to 4000 cycles at 1 Hz. The measured results demonstrate subsidence under load, lift-off on the unloaded side, and horizontal translation of the plate specially at the loaded side. Fatigue loading increased the displacements, primarily during the first 100 cycles. Comparison of various fixation systems indicated that the plate with screw fixation was the stiffest with the least subsidence and liftoff. The increase in post inclination from 0 to 3 deg stiffened the plate by diminishing the liftoff. All fixation systems demonstrated deterioration under repetitive loads. In general, the finite element predictions of the experimental fixation systems were in agreement with measurements. The finite element analyses showed that porous coated posts (modeled with nonlinear interface friction with and without coupling) generated slightly less resistance to liftoff than smooth-surfaced posts. In the presence of porous coated posts, Coulomb friction greatly overestimated the rigidity by reducing the liftoff and subsidence to levels even smaller than those predicted for the design with screw fixation. The sequence of combined load application also influenced the predicted response. Finally, the finite element model incorporating measured interface friction and pull-out responses can be used for the analysis of cementless total joint replacement systems during the post-operation period.
keyword(s): Screws , Stress , Urethane elastomers , Shear (Mechanics) , Design , Finite element analysis , Force , Friction , Finite element model , Compression , Fatigue , Measurement , Cycles , Coulombs , Stability , Arthroplasty AND Surgical screws ,
|
Collections
Show full item record
| contributor author | A. Shirazi-Adl | |
| contributor author | M. Dammak | |
| contributor author | D. Zukor | |
| contributor author | O. Patenaude | |
| date accessioned | 2017-05-09T00:04:11Z | |
| date available | 2017-05-09T00:04:11Z | |
| date copyright | October, 2001 | |
| date issued | 2001 | |
| identifier issn | 0148-0731 | |
| identifier other | JBENDY-26190#391_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/124784 | |
| description abstract | The short- and long-term successes of tibial cementless implants depend on the initial fixation stability often provided by posts and screws. In this work, a metallic plate was fixed to a polyurethane block with either two bone screws, two smooth-surfaced posts, or two novel smooth-surfaced posts with adjustable inclinations. For this last case, inclinations of 0, 1.5, and 3 deg were considered following insertion. A load of 1031 N was eccentrically applied on the plate at an angle of ∼14 deg, which resulted in a 1000 N axial compressive force and a 250 N shear force. The response was measured under static and repetitive loading up to 4000 cycles at 1 Hz. The measured results demonstrate subsidence under load, lift-off on the unloaded side, and horizontal translation of the plate specially at the loaded side. Fatigue loading increased the displacements, primarily during the first 100 cycles. Comparison of various fixation systems indicated that the plate with screw fixation was the stiffest with the least subsidence and liftoff. The increase in post inclination from 0 to 3 deg stiffened the plate by diminishing the liftoff. All fixation systems demonstrated deterioration under repetitive loads. In general, the finite element predictions of the experimental fixation systems were in agreement with measurements. The finite element analyses showed that porous coated posts (modeled with nonlinear interface friction with and without coupling) generated slightly less resistance to liftoff than smooth-surfaced posts. In the presence of porous coated posts, Coulomb friction greatly overestimated the rigidity by reducing the liftoff and subsidence to levels even smaller than those predicted for the design with screw fixation. The sequence of combined load application also influenced the predicted response. Finally, the finite element model incorporating measured interface friction and pull-out responses can be used for the analysis of cementless total joint replacement systems during the post-operation period. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Experimental and Finite Element Comparison of Various Fixation Designs in Combined Loads | |
| type | Journal Paper | |
| journal volume | 123 | |
| journal issue | 5 | |
| journal title | Journal of Biomechanical Engineering | |
| identifier doi | 10.1115/1.1395572 | |
| journal fristpage | 391 | |
| journal lastpage | 395 | |
| identifier eissn | 1528-8951 | |
| keywords | Screws | |
| keywords | Stress | |
| keywords | Urethane elastomers | |
| keywords | Shear (Mechanics) | |
| keywords | Design | |
| keywords | Finite element analysis | |
| keywords | Force | |
| keywords | Friction | |
| keywords | Finite element model | |
| keywords | Compression | |
| keywords | Fatigue | |
| keywords | Measurement | |
| keywords | Cycles | |
| keywords | Coulombs | |
| keywords | Stability | |
| keywords | Arthroplasty AND Surgical screws | |
| tree | Journal of Biomechanical Engineering:;2001:;volume( 123 ):;issue: 005 | |
| contenttype | Fulltext |