Spatial Modulation of Repeated Vibration Modes in Rotationally Periodic StructuresSource: Journal of Vibration and Acoustics:;2000:;volume( 122 ):;issue: 001::page 62DOI: 10.1115/1.568443Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: When a structure deviates from axisymmetry because of circumferentially varying model features, significant changes can occur to its natural frequencies and modes, particularly for the doublet modes that have non-zero nodal diameters and repeated natural frequencies in the limit of axisymmetry. Of technical interest are configurations in which inertia, dissipation, stiffness, or domain features are evenly distributed around the structure. Aside from the well-studied phenomenon of eigenvalue splitting, whereby the natural frequencies of certain doublets split into distinct values, modes of the axisymmetric structure that are precisely harmonic become contaminated with certain additional wavenumbers. From analytical, numerical, and experimental perspectives, this paper investigates spatial modulation of the doublet modes, particularly those retaining repeated natural frequencies for which modulation is most acute. In some cases, modulation can be sufficiently severe that a mode shape will “beat” spatially as harmonics with commensurate wavenumbers combine, just as the superposition of time records having nearly equal frequencies leads to classic temporal beating. An algebraic relation and a diagrammatic method are discussed with a view towards predicting the wavenumbers present in modulated eigenfunctions given the number of nodal diameters in the base mode and the number of equally spaced model features. [S0739-3717(00)01501-4]
keyword(s): Contamination , Eigenfunctions , Vibration , Disks , Eigenvalues , Frequency , Periodic structures , Shapes , Stiffness AND Inertia (Mechanics) ,
|
Collections
Show full item record
| contributor author | M. Kim | |
| contributor author | J. Moon | |
| contributor author | J. A. Wickert | |
| date accessioned | 2017-05-09T00:03:51Z | |
| date available | 2017-05-09T00:03:51Z | |
| date copyright | January, 2000 | |
| date issued | 2000 | |
| identifier issn | 1048-9002 | |
| identifier other | JVACEK-28850#62_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/124594 | |
| description abstract | When a structure deviates from axisymmetry because of circumferentially varying model features, significant changes can occur to its natural frequencies and modes, particularly for the doublet modes that have non-zero nodal diameters and repeated natural frequencies in the limit of axisymmetry. Of technical interest are configurations in which inertia, dissipation, stiffness, or domain features are evenly distributed around the structure. Aside from the well-studied phenomenon of eigenvalue splitting, whereby the natural frequencies of certain doublets split into distinct values, modes of the axisymmetric structure that are precisely harmonic become contaminated with certain additional wavenumbers. From analytical, numerical, and experimental perspectives, this paper investigates spatial modulation of the doublet modes, particularly those retaining repeated natural frequencies for which modulation is most acute. In some cases, modulation can be sufficiently severe that a mode shape will “beat” spatially as harmonics with commensurate wavenumbers combine, just as the superposition of time records having nearly equal frequencies leads to classic temporal beating. An algebraic relation and a diagrammatic method are discussed with a view towards predicting the wavenumbers present in modulated eigenfunctions given the number of nodal diameters in the base mode and the number of equally spaced model features. [S0739-3717(00)01501-4] | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Spatial Modulation of Repeated Vibration Modes in Rotationally Periodic Structures | |
| type | Journal Paper | |
| journal volume | 122 | |
| journal issue | 1 | |
| journal title | Journal of Vibration and Acoustics | |
| identifier doi | 10.1115/1.568443 | |
| journal fristpage | 62 | |
| journal lastpage | 68 | |
| identifier eissn | 1528-8927 | |
| keywords | Contamination | |
| keywords | Eigenfunctions | |
| keywords | Vibration | |
| keywords | Disks | |
| keywords | Eigenvalues | |
| keywords | Frequency | |
| keywords | Periodic structures | |
| keywords | Shapes | |
| keywords | Stiffness AND Inertia (Mechanics) | |
| tree | Journal of Vibration and Acoustics:;2000:;volume( 122 ):;issue: 001 | |
| contenttype | Fulltext |