YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vibration Control of Beams Using Electro-Magnetic Compressional Damping Treatment

    Source: Journal of Vibration and Acoustics:;2000:;volume( 122 ):;issue: 003::page 235
    Author:
    J. Oh
    ,
    S. Poh
    ,
    M. Ruzzene
    ,
    A. Baz
    DOI: 10.1115/1.1303004
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A new class of structural damping treatments is introduced. This class is the electro-magnetic damping treatment (EMDT) which relies in its operation on a viscoelastic damping layer sandwiched between two magnetic layers. Interaction between the magnets generates magnetic forces that enhance the compressional damping mechanism of the viscoelastic layer. With proper tuning of the magnetic forces, in response to the structural vibration, undesirable resonances and catastrophic failures can be avoided. The fundamentals and the underlying phenomena associated with the EMDT are investigated theoretically and experimentally. A finite element model is developed to describe the interaction between the dynamics of flexible beams, the viscoelastic damping layer and the magnetic layers. The validity of the developed finite element model is checked experimentally using aluminum beams treated with EMDT patches. The beam/EMDT system is subjected to sinusoidal excitations and its multi-mode response is monitored when the magnetic layers are activated or not. Several control strategies are considered to activate the magnetic layers including simple PD controllers. The performance of the uncontrolled and controlled system is determined at various operating conditions. Attenuation of 49.4 percent is obtained for the amplitude of first mode of vibration (5.2 Hz) with control voltage of 0.2 volts. The attenuation increases to 72.56 percent for the second mode of vibration (28.6 Hz) with a control voltage of 1.68 volts. Comparisons with conventional Passive Constrained Layer Damping (PCLD) treatments emphasize the potential of the EMDT treatment as an effective means for controlling structural vibrations. [S0739-3717(00)00603-6]
    keyword(s): Damping AND Vibration ,
    • Download: (495.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vibration Control of Beams Using Electro-Magnetic Compressional Damping Treatment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/124555
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorJ. Oh
    contributor authorS. Poh
    contributor authorM. Ruzzene
    contributor authorA. Baz
    date accessioned2017-05-09T00:03:46Z
    date available2017-05-09T00:03:46Z
    date copyrightJuly, 2000
    date issued2000
    identifier issn1048-9002
    identifier otherJVACEK-28852#235_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/124555
    description abstractA new class of structural damping treatments is introduced. This class is the electro-magnetic damping treatment (EMDT) which relies in its operation on a viscoelastic damping layer sandwiched between two magnetic layers. Interaction between the magnets generates magnetic forces that enhance the compressional damping mechanism of the viscoelastic layer. With proper tuning of the magnetic forces, in response to the structural vibration, undesirable resonances and catastrophic failures can be avoided. The fundamentals and the underlying phenomena associated with the EMDT are investigated theoretically and experimentally. A finite element model is developed to describe the interaction between the dynamics of flexible beams, the viscoelastic damping layer and the magnetic layers. The validity of the developed finite element model is checked experimentally using aluminum beams treated with EMDT patches. The beam/EMDT system is subjected to sinusoidal excitations and its multi-mode response is monitored when the magnetic layers are activated or not. Several control strategies are considered to activate the magnetic layers including simple PD controllers. The performance of the uncontrolled and controlled system is determined at various operating conditions. Attenuation of 49.4 percent is obtained for the amplitude of first mode of vibration (5.2 Hz) with control voltage of 0.2 volts. The attenuation increases to 72.56 percent for the second mode of vibration (28.6 Hz) with a control voltage of 1.68 volts. Comparisons with conventional Passive Constrained Layer Damping (PCLD) treatments emphasize the potential of the EMDT treatment as an effective means for controlling structural vibrations. [S0739-3717(00)00603-6]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVibration Control of Beams Using Electro-Magnetic Compressional Damping Treatment
    typeJournal Paper
    journal volume122
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.1303004
    journal fristpage235
    journal lastpage243
    identifier eissn1528-8927
    keywordsDamping AND Vibration
    treeJournal of Vibration and Acoustics:;2000:;volume( 122 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian