YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastic-Plastic Analysis of the PVRC Burst Disk Tests With Comparison to the ASME Code Primary Stress Limits

    Source: Journal of Pressure Vessel Technology:;2000:;volume( 122 ):;issue: 002::page 146
    Author:
    D. P. Jones
    ,
    J. E. Holliday
    DOI: 10.1115/1.556164
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper provides a comparison between finite element analysis results and test data from the Pressure Vessel Research Council (PVRC) burst disk program. Testing sponsored by the PVRC over 20 yr ago was done by pressurizing circular flat disks made from three different materials until failure by bursting. The purpose of this reanalysis is to investigate the use of finite element analysis (FEA) to assess the primary stress limits of the ASME Boiler and Pressure Vessel Code (hereafter the Code), and to qualify the use of elastic-plastic (EP-FEA) for limit-load calculations. The three materials tested represent the range of strength and ductility found in modern pressure vessel construction and include a low-strength, high-ductility material, a medium-strength, medium-ductility material, and a high-strength, low-ductility, low-alloy material. Results of elastic and EP-FEA are compared to test data. Stresses from the elastic analyses are linearized for comparison of Code primary stress limits to test results. Elastic-plastic analyses are done using both best-estimate and elastic-perfectly plastic (EPP) stress-strain curves. Both large strain-large displacement (LSLD) and small strain-small displacement (SSSD) assumptions are used with the EP-FEA. Analysis results are compared to test results to evaluate the various analysis methods, models, and assumptions as applied to the bursting of thin disks. The test results show that low-strength, high-ductility materials have a higher burst capacity than do high-strength, low-ductility materials. Linearized elastic FEA stresses and ASME Code primary stress limits provide excessive margins to failure for the burst disks for all three materials. The results of these studies show that LSLD EP-FEA can provide a best-estimate analysis of the disks, but the accuracy depends on the material stress-strain curve. This work concludes that SSSD EPP analysis methods provide a robust and viable alternative to the current elastic linearization method of satisfying the primary stress limits of the Code. [S0094-9930(00)01602-4]
    keyword(s): Pressure , Stress , Finite element analysis , Disks , Failure AND ASME Standards ,
    • Download: (329.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastic-Plastic Analysis of the PVRC Burst Disk Tests With Comparison to the ASME Code Primary Stress Limits

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/124220
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorD. P. Jones
    contributor authorJ. E. Holliday
    date accessioned2017-05-09T00:03:16Z
    date available2017-05-09T00:03:16Z
    date copyrightMay, 2000
    date issued2000
    identifier issn0094-9930
    identifier otherJPVTAS-28398#146_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/124220
    description abstractThis paper provides a comparison between finite element analysis results and test data from the Pressure Vessel Research Council (PVRC) burst disk program. Testing sponsored by the PVRC over 20 yr ago was done by pressurizing circular flat disks made from three different materials until failure by bursting. The purpose of this reanalysis is to investigate the use of finite element analysis (FEA) to assess the primary stress limits of the ASME Boiler and Pressure Vessel Code (hereafter the Code), and to qualify the use of elastic-plastic (EP-FEA) for limit-load calculations. The three materials tested represent the range of strength and ductility found in modern pressure vessel construction and include a low-strength, high-ductility material, a medium-strength, medium-ductility material, and a high-strength, low-ductility, low-alloy material. Results of elastic and EP-FEA are compared to test data. Stresses from the elastic analyses are linearized for comparison of Code primary stress limits to test results. Elastic-plastic analyses are done using both best-estimate and elastic-perfectly plastic (EPP) stress-strain curves. Both large strain-large displacement (LSLD) and small strain-small displacement (SSSD) assumptions are used with the EP-FEA. Analysis results are compared to test results to evaluate the various analysis methods, models, and assumptions as applied to the bursting of thin disks. The test results show that low-strength, high-ductility materials have a higher burst capacity than do high-strength, low-ductility materials. Linearized elastic FEA stresses and ASME Code primary stress limits provide excessive margins to failure for the burst disks for all three materials. The results of these studies show that LSLD EP-FEA can provide a best-estimate analysis of the disks, but the accuracy depends on the material stress-strain curve. This work concludes that SSSD EPP analysis methods provide a robust and viable alternative to the current elastic linearization method of satisfying the primary stress limits of the Code. [S0094-9930(00)01602-4]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElastic-Plastic Analysis of the PVRC Burst Disk Tests With Comparison to the ASME Code Primary Stress Limits
    typeJournal Paper
    journal volume122
    journal issue2
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.556164
    journal fristpage146
    journal lastpage151
    identifier eissn1528-8978
    keywordsPressure
    keywordsStress
    keywordsFinite element analysis
    keywordsDisks
    keywordsFailure AND ASME Standards
    treeJournal of Pressure Vessel Technology:;2000:;volume( 122 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian