YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Edges of Regression and Limit Normal Point of Conjugate Surfaces1

    Source: Journal of Mechanical Design:;2000:;volume( 122 ):;issue: 004::page 419
    Author:
    Ningxin Chen
    ,
    Manager of Research
    DOI: 10.1115/1.1289021
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The presented paper utilizes the basic theory of the envelope surface in differential geometry to investigate the undercutting line, the contact boundary line and the limit normal point of conjugate surfaces in gearing. It is proved that (1) the edges of regression of the envelope surfaces are the undercutting line and the contact boundary line in theory of gearing respectively, and (2) the limit normal point is the common tangent point of the two edges of regression of the conjugate surfaces. New equations for the undercutting line, the contact boundary line and the limit normal point of the conjugate surfaces are developed based on the definition of the edges of regression. Numerical examples are taken for illustration of the above-mentioned concepts and equations. [S1050-0472(00)00104-5]
    keyword(s): Equations ,
    • Download: (158.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Edges of Regression and Limit Normal Point of Conjugate Surfaces1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/124046
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorNingxin Chen
    contributor authorManager of Research
    date accessioned2017-05-09T00:02:59Z
    date available2017-05-09T00:02:59Z
    date copyrightDecember, 2000
    date issued2000
    identifier issn1050-0472
    identifier otherJMDEDB-27678#419_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/124046
    description abstractThe presented paper utilizes the basic theory of the envelope surface in differential geometry to investigate the undercutting line, the contact boundary line and the limit normal point of conjugate surfaces in gearing. It is proved that (1) the edges of regression of the envelope surfaces are the undercutting line and the contact boundary line in theory of gearing respectively, and (2) the limit normal point is the common tangent point of the two edges of regression of the conjugate surfaces. New equations for the undercutting line, the contact boundary line and the limit normal point of the conjugate surfaces are developed based on the definition of the edges of regression. Numerical examples are taken for illustration of the above-mentioned concepts and equations. [S1050-0472(00)00104-5]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEdges of Regression and Limit Normal Point of Conjugate Surfaces1
    typeJournal Paper
    journal volume122
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.1289021
    journal fristpage419
    journal lastpage425
    identifier eissn1528-9001
    keywordsEquations
    treeJournal of Mechanical Design:;2000:;volume( 122 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian