YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optical Observation of the Supercavitation Induced by High-Speed Water Entry

    Source: Journal of Fluids Engineering:;2000:;volume( 122 ):;issue: 004::page 806
    Author:
    Hong-Hui Shi
    ,
    Lecturer
    ,
    Motoyuki Itoh
    ,
    Takuya Takami
    DOI: 10.1115/1.1310575
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: When a high-speed projectile penetrates into water, a cavity is formed behind the projectile. The gas enclosed in the cavity experiences a nonequilibrium process, i.e., the gas pressure decreases as the projectile moves more deeply into water. As a result, the cavity is sealed near the free surface (surface closure) and subsequently the cavity breaks up in water (deep closure). Accompanying the break-up of the cavity, secondary shock waves appear. This is the so-called supercavitation in water entry. This paper describes an experimental investigation into the water entry phenomenon. Projectiles of 342 m/s were generated from a small-bore rifle that was fixed vertically in the experimental facility. The projectiles were fired into a windowed water tank. A shadowgraph optical observation was performed to observe the entry process of the projectile and the formation and collapse of the cavity behind the projectile. A number of interesting observations relating to the motion of the free surface, the splash, the underwater bubbly flow and so on were found. [S0098-2202(00)00204-2]
    keyword(s): Cavities , Projectiles , Water AND Pressure ,
    • Download: (637.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optical Observation of the Supercavitation Induced by High-Speed Water Entry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123837
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorHong-Hui Shi
    contributor authorLecturer
    contributor authorMotoyuki Itoh
    contributor authorTakuya Takami
    date accessioned2017-05-09T00:02:37Z
    date available2017-05-09T00:02:37Z
    date copyrightDecember, 2000
    date issued2000
    identifier issn0098-2202
    identifier otherJFEGA4-27157#806_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123837
    description abstractWhen a high-speed projectile penetrates into water, a cavity is formed behind the projectile. The gas enclosed in the cavity experiences a nonequilibrium process, i.e., the gas pressure decreases as the projectile moves more deeply into water. As a result, the cavity is sealed near the free surface (surface closure) and subsequently the cavity breaks up in water (deep closure). Accompanying the break-up of the cavity, secondary shock waves appear. This is the so-called supercavitation in water entry. This paper describes an experimental investigation into the water entry phenomenon. Projectiles of 342 m/s were generated from a small-bore rifle that was fixed vertically in the experimental facility. The projectiles were fired into a windowed water tank. A shadowgraph optical observation was performed to observe the entry process of the projectile and the formation and collapse of the cavity behind the projectile. A number of interesting observations relating to the motion of the free surface, the splash, the underwater bubbly flow and so on were found. [S0098-2202(00)00204-2]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptical Observation of the Supercavitation Induced by High-Speed Water Entry
    typeJournal Paper
    journal volume122
    journal issue4
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.1310575
    journal fristpage806
    journal lastpage810
    identifier eissn1528-901X
    keywordsCavities
    keywordsProjectiles
    keywordsWater AND Pressure
    treeJournal of Fluids Engineering:;2000:;volume( 122 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian