Dynamics of Human Coronary Arterial Motion and Its Potential Role in Coronary AtherogenesisSource: Journal of Biomechanical Engineering:;2000:;volume( 122 ):;issue: 005::page 488DOI: 10.1115/1.1289989Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Mechanical forces have been widely recognized to play an important role in the pathogenesis of atherosclerosis. Since coronary arterial motion modulates both vessel wall mechanics and fluid dynamics, it is hypothesized that certain motion patterns might be atherogenic by generating adverse wall mechanical forces or fluid dynamic environments. To characterize the dynamics of coronary arterial motion and explore its implications in atherogenesis, a system was developed to track the motion of coronary arteries in vivo, and employed to quantify the dynamics of four right coronary arteries (RCA) and eight left anterior descending (LAD) coronary arteries. The analysis shows that: (a) The motion parameters vary among individuals, with coefficients of variation ranging from 0.25 to 0.59 for axially and temporally averaged values of the parameters; (b) the motion parameters of individual vessels vary widely along the vessel axis, with coefficients of variation as high as 2.28; (c) the LAD exhibits a greater axial variability in torsion, a measure of curve “helicity,” than the RCA; (d) in comparison with the RCA, the LAD experiences less displacement (p=0.009), but higher torsion (p=0.03). These results suggest that: (i) the variability of certain motion parameters, particularly those that exhibit large axial variations, might be related to variations in susceptibility to atherosclerosis among different individuals and vascular regions; and (ii) differences in motion parameters between the RCA and LAD might relate to differences in their susceptibility to atherosclerosis. [S0148-0731(00)00405-2]
keyword(s): Dynamics (Mechanics) , Motion , Vessels , Coronary arteries , Torsion , Atherosclerosis AND Displacement ,
|
Collections
Show full item record
| contributor author | Zhaohua Ding | |
| contributor author | Morton H. Friedman | |
| date accessioned | 2017-05-09T00:01:49Z | |
| date available | 2017-05-09T00:01:49Z | |
| date copyright | October, 2000 | |
| date issued | 2000 | |
| identifier issn | 0148-0731 | |
| identifier other | JBENDY-26095#488_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/123330 | |
| description abstract | Mechanical forces have been widely recognized to play an important role in the pathogenesis of atherosclerosis. Since coronary arterial motion modulates both vessel wall mechanics and fluid dynamics, it is hypothesized that certain motion patterns might be atherogenic by generating adverse wall mechanical forces or fluid dynamic environments. To characterize the dynamics of coronary arterial motion and explore its implications in atherogenesis, a system was developed to track the motion of coronary arteries in vivo, and employed to quantify the dynamics of four right coronary arteries (RCA) and eight left anterior descending (LAD) coronary arteries. The analysis shows that: (a) The motion parameters vary among individuals, with coefficients of variation ranging from 0.25 to 0.59 for axially and temporally averaged values of the parameters; (b) the motion parameters of individual vessels vary widely along the vessel axis, with coefficients of variation as high as 2.28; (c) the LAD exhibits a greater axial variability in torsion, a measure of curve “helicity,” than the RCA; (d) in comparison with the RCA, the LAD experiences less displacement (p=0.009), but higher torsion (p=0.03). These results suggest that: (i) the variability of certain motion parameters, particularly those that exhibit large axial variations, might be related to variations in susceptibility to atherosclerosis among different individuals and vascular regions; and (ii) differences in motion parameters between the RCA and LAD might relate to differences in their susceptibility to atherosclerosis. [S0148-0731(00)00405-2] | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Dynamics of Human Coronary Arterial Motion and Its Potential Role in Coronary Atherogenesis | |
| type | Journal Paper | |
| journal volume | 122 | |
| journal issue | 5 | |
| journal title | Journal of Biomechanical Engineering | |
| identifier doi | 10.1115/1.1289989 | |
| journal fristpage | 488 | |
| journal lastpage | 492 | |
| identifier eissn | 1528-8951 | |
| keywords | Dynamics (Mechanics) | |
| keywords | Motion | |
| keywords | Vessels | |
| keywords | Coronary arteries | |
| keywords | Torsion | |
| keywords | Atherosclerosis AND Displacement | |
| tree | Journal of Biomechanical Engineering:;2000:;volume( 122 ):;issue: 005 | |
| contenttype | Fulltext |