YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Functional Tissue Engineering: The Role of Biomechanics

    Source: Journal of Biomechanical Engineering:;2000:;volume( 122 ):;issue: 006::page 570
    Author:
    David L. Butler
    ,
    Steven A. Goldstein
    ,
    Farshid Guilak
    DOI: 10.1115/1.1318906
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: “Tissue engineering” uses implanted cells, scaffolds, DNA, protein, and/or protein fragments to replace or repair injured or diseased tissues and organs. Despite its early success, tissue engineers have faced challenges in repairing or replacing tissues that serve a predominantly biomechanical function. An evolving discipline called “functional tissue engineering” (FTE) seeks to address these challenges. In this paper, the authors present principles of functional tissue engineering that should be addressed when engineering repairs and replacements for load-bearing structures. First, in vivo stress/strain histories need to be measured for a variety of activities. These in vivo data provide mechanical thresholds that tissue repairs/replacements will likely encounter after surgery. Second, the mechanical properties of the native tissues must be established for subfailure and failure conditions. These “baseline data” provide parameters within the expected thresholds for different in vivo activities and beyond these levels if safety factors are to be incorporated. Third, a subset of these mechanical properties must be selected and prioritized. This subset is important, given that the mechanical properties of the designs are not expected to completely duplicate the properties of the native tissues. Fourth, standards must be set when evaluating the repairs/replacements after surgery so as to determine, “how good is good enough?” Some aspects of the repair outcome may be inferior, but other mechanical characteristics of the repairs and replacements might be suitable. New and improved methods must also be developed for assessing the function of engineered tissues. Fifth, the effects of physical factors on cellular activity must be determined in engineered tissues. Knowing these signals may shorten the iterations required to replace a tissue successfully and direct cellular activity and phenotype toward a desired end goal. Finally, to effect a better repair outcome, cell-matrix implants may benefit from being mechanically stimulated using in vitro “bioreactors” prior to implantation. Increasing evidence suggests that mechanical stress, as well as other physical factors, may significantly increase the biosynthetic activity of cells in bioartificial matrices. Incorporating each of these principles of functional tissue engineering should result in safer and more efficacious repairs and replacements for the surgeon and patient. [S0148-0731(00)00206-5]
    keyword(s): Stress , Biomechanics , Mechanical properties , Biological tissues , Maintenance , Failure , Tissue engineering , Engineers , Surgery , Performance , Cartilage AND Design ,
    • Download: (84.76Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Functional Tissue Engineering: The Role of Biomechanics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123309
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDavid L. Butler
    contributor authorSteven A. Goldstein
    contributor authorFarshid Guilak
    date accessioned2017-05-09T00:01:48Z
    date available2017-05-09T00:01:48Z
    date copyrightDecember, 2000
    date issued2000
    identifier issn0148-0731
    identifier otherJBENDY-26109#570_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123309
    description abstract“Tissue engineering” uses implanted cells, scaffolds, DNA, protein, and/or protein fragments to replace or repair injured or diseased tissues and organs. Despite its early success, tissue engineers have faced challenges in repairing or replacing tissues that serve a predominantly biomechanical function. An evolving discipline called “functional tissue engineering” (FTE) seeks to address these challenges. In this paper, the authors present principles of functional tissue engineering that should be addressed when engineering repairs and replacements for load-bearing structures. First, in vivo stress/strain histories need to be measured for a variety of activities. These in vivo data provide mechanical thresholds that tissue repairs/replacements will likely encounter after surgery. Second, the mechanical properties of the native tissues must be established for subfailure and failure conditions. These “baseline data” provide parameters within the expected thresholds for different in vivo activities and beyond these levels if safety factors are to be incorporated. Third, a subset of these mechanical properties must be selected and prioritized. This subset is important, given that the mechanical properties of the designs are not expected to completely duplicate the properties of the native tissues. Fourth, standards must be set when evaluating the repairs/replacements after surgery so as to determine, “how good is good enough?” Some aspects of the repair outcome may be inferior, but other mechanical characteristics of the repairs and replacements might be suitable. New and improved methods must also be developed for assessing the function of engineered tissues. Fifth, the effects of physical factors on cellular activity must be determined in engineered tissues. Knowing these signals may shorten the iterations required to replace a tissue successfully and direct cellular activity and phenotype toward a desired end goal. Finally, to effect a better repair outcome, cell-matrix implants may benefit from being mechanically stimulated using in vitro “bioreactors” prior to implantation. Increasing evidence suggests that mechanical stress, as well as other physical factors, may significantly increase the biosynthetic activity of cells in bioartificial matrices. Incorporating each of these principles of functional tissue engineering should result in safer and more efficacious repairs and replacements for the surgeon and patient. [S0148-0731(00)00206-5]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFunctional Tissue Engineering: The Role of Biomechanics
    typeJournal Paper
    journal volume122
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1318906
    journal fristpage570
    journal lastpage575
    identifier eissn1528-8951
    keywordsStress
    keywordsBiomechanics
    keywordsMechanical properties
    keywordsBiological tissues
    keywordsMaintenance
    keywordsFailure
    keywordsTissue engineering
    keywordsEngineers
    keywordsSurgery
    keywordsPerformance
    keywordsCartilage AND Design
    treeJournal of Biomechanical Engineering:;2000:;volume( 122 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian