YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes

    Source: Journal of Turbomachinery:;1999:;volume( 121 ):;issue: 002::page 209
    Author:
    E. Lutum
    ,
    B. V. Johnson
    DOI: 10.1115/1.2841303
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Film cooling experiments were conducted to investigate the effects of coolant hole length-to-diameter ratio on the film cooling effectiveness. The results from these experiments offer an explanation for the differences between the film cooling results for cylindrical hole injection configurations previously reported by Goldstein et al. (1974), Pedersen et al. (1977), and Sinha et al. (1991). The previously reported injection configurations differed primarily in coolant hole length-to-diameter ratio. The present experiments were conducted with a row of cylindrical holes oriented at 35 deg to a constant-velocity external flow, systematically varying the hole length-to-diameter ratios (L/D = 1.75, 3.5, 5, 7, and 18), and blowing rates (0.52 ≤ M ≤ 1.56). Results from these experiments show in a region 5 ≤ X/D ≤ 50 downstream of coolant injection that the coolant flow guiding capability in the cylindrical hole was apparently established after five hole diameters and no significant changes in the film cooling effectiveness distribution could be observed for the greater L/D. However, the film cooling effectiveness characteristics generally decreased with decreasing hole L/D ratio in the range of 1.75 ≤ L/D ≤ 5.0. This decrease in film cooling performance was attributed to (1) the undeveloped character of the flow in the coolant channels and (2) the greater effective injection angle of the coolant flow with respect to the external flow direction and surface. The lowest values of film cooling effectiveness were measured for the smallest hole length-to-diameter ratio, L/D = 1.75.
    keyword(s): Cooling , Coolants , Flow (Dynamics) AND Channels (Hydraulic engineering) ,
    • Download: (859.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123028
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorE. Lutum
    contributor authorB. V. Johnson
    date accessioned2017-05-09T00:01:17Z
    date available2017-05-09T00:01:17Z
    date copyrightApril, 1999
    date issued1999
    identifier issn0889-504X
    identifier otherJOTUEI-28669#209_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123028
    description abstractFilm cooling experiments were conducted to investigate the effects of coolant hole length-to-diameter ratio on the film cooling effectiveness. The results from these experiments offer an explanation for the differences between the film cooling results for cylindrical hole injection configurations previously reported by Goldstein et al. (1974), Pedersen et al. (1977), and Sinha et al. (1991). The previously reported injection configurations differed primarily in coolant hole length-to-diameter ratio. The present experiments were conducted with a row of cylindrical holes oriented at 35 deg to a constant-velocity external flow, systematically varying the hole length-to-diameter ratios (L/D = 1.75, 3.5, 5, 7, and 18), and blowing rates (0.52 ≤ M ≤ 1.56). Results from these experiments show in a region 5 ≤ X/D ≤ 50 downstream of coolant injection that the coolant flow guiding capability in the cylindrical hole was apparently established after five hole diameters and no significant changes in the film cooling effectiveness distribution could be observed for the greater L/D. However, the film cooling effectiveness characteristics generally decreased with decreasing hole L/D ratio in the range of 1.75 ≤ L/D ≤ 5.0. This decrease in film cooling performance was attributed to (1) the undeveloped character of the flow in the coolant channels and (2) the greater effective injection angle of the coolant flow with respect to the external flow direction and surface. The lowest values of film cooling effectiveness were measured for the smallest hole length-to-diameter ratio, L/D = 1.75.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
    typeJournal Paper
    journal volume121
    journal issue2
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2841303
    journal fristpage209
    journal lastpage216
    identifier eissn1528-8900
    keywordsCooling
    keywordsCoolants
    keywordsFlow (Dynamics) AND Channels (Hydraulic engineering)
    treeJournal of Turbomachinery:;1999:;volume( 121 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian