YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Physics of Hot Crossflow Ingestion in Film Cooling

    Source: Journal of Turbomachinery:;1999:;volume( 121 ):;issue: 003::page 532
    Author:
    E. L. McGrath
    ,
    J. H. Leylek
    DOI: 10.1115/1.2841348
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Computational fluid dynamics (CFD) is used to isolate the flow physics responsible for hot crossflow ingestion, a phenomenon that can cause failure of a film cooled gas turbine component. In the gas turbine industry, new compound-angle shaped hole (CASH) geometries are currently being developed to decrease the heat transfer coefficient and increase the adiabatic effectiveness on film cooled surfaces. These new CASH geometries can have unexpected flow patterns that result in hot crossflow ingestion at the film hole. This investigation examines a 15 deg forward-diffused film hole injected streamwise at 35 deg with a compound angle of 60 deg (FDIFF60) and with a length-to-diameter ratio (L/D) of 4.0. Qualitative and quantitative aspects of computed results agreed well with measurements, thus lending credibility to predictions. The FDIFF60 configuration is a good representative of a typical CASH geometry, and produces flow mechanisms that are characteristic of CASH film cooling. FDIFF60 has been shown to have impressive downstream film cooling performance, while simultaneously having undesirable ingestion at the film hole. In addition to identifying the physical mechanisms driving ingestion, this paper documents the effects on ingestion of the blowing ratio, the density ratio, and the film hole Reynolds number over realistic gas turbine ranges of 0.5 to 1.88, 1.6 to 2.0, and 17,350 to 70,000, respectively. The results of this study show that hot crossflow ingestion is caused by a combination of coolant blockage at the film hole exit plane and of crossflow boundary layer vorticity that has been re-oriented streamwise by the presence of jetting coolant. Ingestion results when this re-oriented vorticity passes over the blocked region of the film hole. The density ratio and the film hole Reynolds number do not have a significant effect on ingestion over the ranges studied, but the blowing ratio has a surprising nonlinear effect. Another important result of this study is that the blockage of coolant hampers convection and allows diffusion to transfer heat into the film hole even when ingestion is not present. This produces both an undesirable temperature gradient and high temperature level on the film hole wall itself. Lessons learned about the physics of ingestion are generalized to arbitrary CASH configurations. The systematic computational methodology currently used has been previously documented and has become a standard for ensuring accurate results. The methodology includes exact modeling of flow physics, proper modeling of the geometry including the crossflow, plenum, and film hole regions, a high quality mesh for grid independent results, second order discretization, and the two-equation k–ε turbulence model with generalized wall functions. The steady, Reynolds-averaged Navier–Stokes equations are solved using a fully elliptic and fully implicit pressure-correction solver with multiblock unstructured and adaptive grid capability and with multigrid convergence acceleration.
    keyword(s): Physics , Cooling , Flow (Dynamics) , Coolants , Gas turbines , Modeling , Geometry , Vorticity , Density , Computational fluid dynamics , Mechanisms , Reynolds number , Temperature gradients , Convection , Pressure , Heat , Diffusion (Physics) , Boundary layers , Measurement , Turbulence , Reynolds-averaged Navier–Stokes equations , Heat transfer coefficients , High temperature , Equations , Failure AND Functions ,
    • Download: (2.284Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Physics of Hot Crossflow Ingestion in Film Cooling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123010
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorE. L. McGrath
    contributor authorJ. H. Leylek
    date accessioned2017-05-09T00:01:15Z
    date available2017-05-09T00:01:15Z
    date copyrightJuly, 1999
    date issued1999
    identifier issn0889-504X
    identifier otherJOTUEI-28670#532_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123010
    description abstractComputational fluid dynamics (CFD) is used to isolate the flow physics responsible for hot crossflow ingestion, a phenomenon that can cause failure of a film cooled gas turbine component. In the gas turbine industry, new compound-angle shaped hole (CASH) geometries are currently being developed to decrease the heat transfer coefficient and increase the adiabatic effectiveness on film cooled surfaces. These new CASH geometries can have unexpected flow patterns that result in hot crossflow ingestion at the film hole. This investigation examines a 15 deg forward-diffused film hole injected streamwise at 35 deg with a compound angle of 60 deg (FDIFF60) and with a length-to-diameter ratio (L/D) of 4.0. Qualitative and quantitative aspects of computed results agreed well with measurements, thus lending credibility to predictions. The FDIFF60 configuration is a good representative of a typical CASH geometry, and produces flow mechanisms that are characteristic of CASH film cooling. FDIFF60 has been shown to have impressive downstream film cooling performance, while simultaneously having undesirable ingestion at the film hole. In addition to identifying the physical mechanisms driving ingestion, this paper documents the effects on ingestion of the blowing ratio, the density ratio, and the film hole Reynolds number over realistic gas turbine ranges of 0.5 to 1.88, 1.6 to 2.0, and 17,350 to 70,000, respectively. The results of this study show that hot crossflow ingestion is caused by a combination of coolant blockage at the film hole exit plane and of crossflow boundary layer vorticity that has been re-oriented streamwise by the presence of jetting coolant. Ingestion results when this re-oriented vorticity passes over the blocked region of the film hole. The density ratio and the film hole Reynolds number do not have a significant effect on ingestion over the ranges studied, but the blowing ratio has a surprising nonlinear effect. Another important result of this study is that the blockage of coolant hampers convection and allows diffusion to transfer heat into the film hole even when ingestion is not present. This produces both an undesirable temperature gradient and high temperature level on the film hole wall itself. Lessons learned about the physics of ingestion are generalized to arbitrary CASH configurations. The systematic computational methodology currently used has been previously documented and has become a standard for ensuring accurate results. The methodology includes exact modeling of flow physics, proper modeling of the geometry including the crossflow, plenum, and film hole regions, a high quality mesh for grid independent results, second order discretization, and the two-equation k–ε turbulence model with generalized wall functions. The steady, Reynolds-averaged Navier–Stokes equations are solved using a fully elliptic and fully implicit pressure-correction solver with multiblock unstructured and adaptive grid capability and with multigrid convergence acceleration.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePhysics of Hot Crossflow Ingestion in Film Cooling
    typeJournal Paper
    journal volume121
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2841348
    journal fristpage532
    journal lastpage541
    identifier eissn1528-8900
    keywordsPhysics
    keywordsCooling
    keywordsFlow (Dynamics)
    keywordsCoolants
    keywordsGas turbines
    keywordsModeling
    keywordsGeometry
    keywordsVorticity
    keywordsDensity
    keywordsComputational fluid dynamics
    keywordsMechanisms
    keywordsReynolds number
    keywordsTemperature gradients
    keywordsConvection
    keywordsPressure
    keywordsHeat
    keywordsDiffusion (Physics)
    keywordsBoundary layers
    keywordsMeasurement
    keywordsTurbulence
    keywordsReynolds-averaged Navier–Stokes equations
    keywordsHeat transfer coefficients
    keywordsHigh temperature
    keywordsEquations
    keywordsFailure AND Functions
    treeJournal of Turbomachinery:;1999:;volume( 121 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian