YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Singularity Analysis of Spatial Mechanisms Using Dual Polynomials and Complex Dual Numbers

    Source: Journal of Mechanical Design:;1999:;volume( 121 ):;issue: 002::page 200
    Author:
    H. H. Cheng
    ,
    S. Thompson
    DOI: 10.1115/1.2829444
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Complex dual numbers w̌ = x + iy + εu + iεv which form a commutative ring are introduced in this paper to solve dual polynomial equations numerically. It is shown that the singularities of a dual input-output displacement polynomial equation of a mechanism correspond to its singularity positions. This new method of identifying singularities provides clear physical insight into the geometry of the singular configurations of a mechanism, which is illustrated through analysis of special configurations of the RCCC spatial mechanism. Numerical solutions for dual polynomial equations and complex dual numbers are conveniently implemented in the CH language environment for analysis of the RCCC spatial mechanism.
    keyword(s): Polynomials , Mechanisms , Equations , Geometry AND Displacement ,
    • Download: (640.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Singularity Analysis of Spatial Mechanisms Using Dual Polynomials and Complex Dual Numbers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/122598
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorH. H. Cheng
    contributor authorS. Thompson
    date accessioned2017-05-09T00:00:29Z
    date available2017-05-09T00:00:29Z
    date copyrightJune, 1999
    date issued1999
    identifier issn1050-0472
    identifier otherJMDEDB-27661#200_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/122598
    description abstractComplex dual numbers w̌ = x + iy + εu + iεv which form a commutative ring are introduced in this paper to solve dual polynomial equations numerically. It is shown that the singularities of a dual input-output displacement polynomial equation of a mechanism correspond to its singularity positions. This new method of identifying singularities provides clear physical insight into the geometry of the singular configurations of a mechanism, which is illustrated through analysis of special configurations of the RCCC spatial mechanism. Numerical solutions for dual polynomial equations and complex dual numbers are conveniently implemented in the CH language environment for analysis of the RCCC spatial mechanism.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSingularity Analysis of Spatial Mechanisms Using Dual Polynomials and Complex Dual Numbers
    typeJournal Paper
    journal volume121
    journal issue2
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.2829444
    journal fristpage200
    journal lastpage205
    identifier eissn1528-9001
    keywordsPolynomials
    keywordsMechanisms
    keywordsEquations
    keywordsGeometry AND Displacement
    treeJournal of Mechanical Design:;1999:;volume( 121 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian