contributor author | M. Li | |
contributor author | R. Wang | |
contributor author | W. O. Soboyejo | |
contributor author | N. Katsube | |
date accessioned | 2017-05-08T23:59:45Z | |
date available | 2017-05-08T23:59:45Z | |
date copyright | October, 1999 | |
date issued | 1999 | |
identifier issn | 0094-4289 | |
identifier other | JEMTA8-27002#453_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/122203 | |
description abstract | The effects of vanadium layer thickness (100, 200 and 400 μm) on the resistance-curve behavior of NiAl/V, microlaminates are examined in this paper. The fracture resistance of the NiAl microlaminates reinforced with 20 vol.% of vanadium layers is shown to increase with increasing vanadium layer thickness. The improved fracture toughness (from an NiAl matrix toughness of ̃6.6 MPam to a steady-state toughness of ̃15 MPam obtained from finite element analysis) is associated with crack bridging and the interactions of cracks with vanadium layers. The reinitiation of cracks in adjacent NiAl layers is modeled using finite element methods and the reinitiation is shown to occur as a result of strain concentrations at the interface between the adjacent NiAl layers and vanadium layers. The deviation of the reinitiated cracks from the pure mode I direction is shown to occur in the direction of maximum shear strain. Toughening due to crack bridging is also modeled using large-scale bridging models. The intrinsic toughness levels of the microlaminates are also inferred by extrapolating the large scale bridging models to arbitrarily large specimen widths. The extrapolations also show that the small-scale bridging intrinsic toughness increases with increasing vanadium layer thickness. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | An Investigation of the Effects of Layer Thickness on the Fracture Behavior of Layered NiAl/V Composites | |
type | Journal Paper | |
journal volume | 121 | |
journal issue | 4 | |
journal title | Journal of Engineering Materials and Technology | |
identifier doi | 10.1115/1.2812401 | |
journal fristpage | 453 | |
journal lastpage | 459 | |
identifier eissn | 1528-8889 | |
keywords | Composite materials | |
keywords | Fracture (Process) | |
keywords | Thickness | |
keywords | Toughness | |
keywords | Electrical resistance | |
keywords | Shear (Mechanics) | |
keywords | Finite element methods | |
keywords | Finite element analysis | |
keywords | Fracture toughness AND Steady state | |
tree | Journal of Engineering Materials and Technology:;1999:;volume( 121 ):;issue: 004 | |
contenttype | Fulltext | |