Show simple item record

contributor authorP. Chiesa
contributor authorG. Lozza
date accessioned2017-05-08T23:59:30Z
date available2017-05-08T23:59:30Z
date copyrightOctober, 1999
date issued1999
identifier issn1528-8919
identifier otherJETPEZ-26792#635_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/122087
description abstractThis paper analyzes the fundamentals of IGCC power plants where carbon dioxide produced by syngas combustion can be removed, liquefied and eventually disposed, to limit the environmental problems due to the “greenhouse effect.” To achieve this goal, a semiclosed-loop gas turbine cycle using an highly-enriched CO2 mixture as working fluid was adopted. As the oxidizer, syngas combustion utilizes oxygen produced by an air separation unit. Combustion gases mainly consists of CO2 and H2 O: after expansion, heat recovery and water condensation, a part of the exhausts, highly concentrated in CO2 , can be easily extracted, compressed and liquefied for storage or disposal. A detailed discussion about the configuration and the thermodynamic performance of these plants is the aim of the paper. Proper attention was paid to: (i) the modelization of the gasification section and of its integration with the power cycle, (ii) the optimization of the pressure ratio due the change of the cycle working fluid, (iii) the calculation of the power consumption of the “auxiliary” equipment, including the compression train of the separated CO2 and the air separation unit. The resulting overall efficiency is in the 38–39 percent range, with status-of-the-art gas turbine technology, but resorting to a substantially higher pressure ratio. The extent of modifications to the gas turbine engine, with respect to commercial units, was therefore discussed. Relevant modifications are needed, but not involving changes in the technology. A second plant scheme will be considered in the second part of the paper, using air for syngas combustion and a physical absorption process to separate CO2 from nitrogen-rich exhausts. A comparison between the two options will be addressed there.
publisherThe American Society of Mechanical Engineers (ASME)
titleCO2 Emission Abatement in IGCC Power Plants by Semiclosed Cycles: Part A—With Oxygen-Blown Combustion
typeJournal Paper
journal volume121
journal issue4
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.2818519
journal fristpage635
journal lastpage641
identifier eissn0742-4795
keywordsCombustion
keywordsPower stations
keywordsCarbon dioxide
keywordsCycles
keywordsOxygen
keywordsIntegrated gasification combined cycle
keywordsEmissions
keywordsSyngas
keywordsGas turbines
keywordsPressure
keywordsFluids
keywordsIndustrial plants
keywordsSeparation (Technology)
keywordsStorage
keywordsTrains
keywordsWater
keywordsMixtures
keywordsNitrogen
keywordsEnergy consumption
keywordsFuel gasification
keywordsCompression
keywordsAbsorption
keywordsCombustion gases
keywordsHeat recovery
keywordsCondensation AND Optimization
treeJournal of Engineering for Gas Turbines and Power:;1999:;volume( 121 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record