YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In-Plane Bending of a Short-Radius Curved Pipe Bend

    Source: Journal of Manufacturing Science and Engineering:;1967:;volume( 089 ):;issue: 002::page 271
    Author:
    N. Jones
    DOI: 10.1115/1.3610039
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The analysis developed in this article is a logical extension, or generalization, of Von Karman’s original theory [1] on curved pipe bends. It can be shown, for long-radius pipe bends which have a negligible shift of the neutral axis, that the solution presented here reduces to that of Von Karman. It is evident from the results of this analysis that the stresses in and flexibility of curved pipe bends are virtually independent of γ(a/ρ) (even for γ approaching unity) and depend almost entirely on the simple Von Karman pipe factor λ(tρ/a2 ). Errors arising from premature truncation of the selected power series for the radial displacement are discussed, and a guide given to the number of terms necessary for a particular problem.
    keyword(s): Pipe bends , Plasticity , Stress , Pipes , Displacement AND Errors ,
    • Download: (1.674Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In-Plane Bending of a Short-Radius Curved Pipe Bend

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121879
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorN. Jones
    date accessioned2017-05-08T23:59:08Z
    date available2017-05-08T23:59:08Z
    date copyrightMay, 1967
    date issued1967
    identifier issn1087-1357
    identifier otherJMSEFK-27510#271_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121879
    description abstractThe analysis developed in this article is a logical extension, or generalization, of Von Karman’s original theory [1] on curved pipe bends. It can be shown, for long-radius pipe bends which have a negligible shift of the neutral axis, that the solution presented here reduces to that of Von Karman. It is evident from the results of this analysis that the stresses in and flexibility of curved pipe bends are virtually independent of γ(a/ρ) (even for γ approaching unity) and depend almost entirely on the simple Von Karman pipe factor λ(tρ/a2 ). Errors arising from premature truncation of the selected power series for the radial displacement are discussed, and a guide given to the number of terms necessary for a particular problem.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIn-Plane Bending of a Short-Radius Curved Pipe Bend
    typeJournal Paper
    journal volume89
    journal issue2
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.3610039
    journal fristpage271
    journal lastpage277
    identifier eissn1528-8935
    keywordsPipe bends
    keywordsPlasticity
    keywordsStress
    keywordsPipes
    keywordsDisplacement AND Errors
    treeJournal of Manufacturing Science and Engineering:;1967:;volume( 089 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian