YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Remodeling of a Collagenous Tissue at Fixed Lengths

    Source: Journal of Biomechanical Engineering:;1999:;volume( 121 ):;issue: 006::page 591
    Author:
    J. D. Humphrey
    DOI: 10.1115/1.2800858
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Mature tissues can often adapt to changes in their chemical, mechanical, or thermal environment. For example, in response to sustained increases or decreases in mechanical loads, some tissues grow and remodel so as to restore the stress or strain to its homeostatic state. Whereas most previous work addresses gross descriptors of tissue growth, this paper introduces a possible cell-mediated mechanism by which remodeling may occur in a soft connective tissue—that the kinetics of collagen deposition and degradation is similar regardless of the configuration of the body at which it occurs. The proposed theoretical framework applies to three-dimensional settings, but it is illustrated by focusing on the remodeling of a uniaxial collagenous tissue that is maintained at a fixed length for an extended period. It is shown that qualitative features expected of such remodeling (e.g., an increased compliance and increased stress-free length when remodeling occurs at an extended length) are easily realized. Growth and remodeling are complex phenomena, however, and are likely accomplished via multiple complementary mechanisms. There is a need, therefore, to identify other candidate mechanisms and, of course, to collect experimental data suitable for testing and refining the possible theories.
    keyword(s): Biological tissues , Stress , Mechanisms AND Testing ,
    • Download: (805.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Remodeling of a Collagenous Tissue at Fixed Lengths

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121754
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorJ. D. Humphrey
    date accessioned2017-05-08T23:58:57Z
    date available2017-05-08T23:58:57Z
    date copyrightDecember, 1999
    date issued1999
    identifier issn0148-0731
    identifier otherJBENDY-25898#591_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121754
    description abstractMature tissues can often adapt to changes in their chemical, mechanical, or thermal environment. For example, in response to sustained increases or decreases in mechanical loads, some tissues grow and remodel so as to restore the stress or strain to its homeostatic state. Whereas most previous work addresses gross descriptors of tissue growth, this paper introduces a possible cell-mediated mechanism by which remodeling may occur in a soft connective tissue—that the kinetics of collagen deposition and degradation is similar regardless of the configuration of the body at which it occurs. The proposed theoretical framework applies to three-dimensional settings, but it is illustrated by focusing on the remodeling of a uniaxial collagenous tissue that is maintained at a fixed length for an extended period. It is shown that qualitative features expected of such remodeling (e.g., an increased compliance and increased stress-free length when remodeling occurs at an extended length) are easily realized. Growth and remodeling are complex phenomena, however, and are likely accomplished via multiple complementary mechanisms. There is a need, therefore, to identify other candidate mechanisms and, of course, to collect experimental data suitable for testing and refining the possible theories.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRemodeling of a Collagenous Tissue at Fixed Lengths
    typeJournal Paper
    journal volume121
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2800858
    journal fristpage591
    journal lastpage597
    identifier eissn1528-8951
    keywordsBiological tissues
    keywordsStress
    keywordsMechanisms AND Testing
    treeJournal of Biomechanical Engineering:;1999:;volume( 121 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian