YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parametric Instability of a Beam Due to Axial Excitations and to Boundary Conditions

    Source: Journal of Vibration and Acoustics:;1998:;volume( 120 ):;issue: 002::page 461
    Author:
    R. Dufour
    ,
    A. Berlioz
    DOI: 10.1115/1.2893852
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper the stability of the lateral dynamic behavior of a pinned-pinned, clamped-pinned and clamped-clamped beam under axial periodic force or torque is studied. The time-varying parameter equations are derived using the Rayleigh-Ritz method. The stability analysis of the solution is based on Floquet’s theory and investigated in detail. The Rayleigh-Ritz results are compared to those of a finite element modal reduction. It is shown that the lateral instabilities of the beam depend on the forcing frequency, the type of excitation and the boundary conditions. Several experimental tests enable the validation of the numerical results.
    keyword(s): Boundary-value problems , Stability , Finite element analysis , Force , Torque , Equations AND Rayleigh-Ritz methods ,
    • Download: (866.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parametric Instability of a Beam Due to Axial Excitations and to Boundary Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121459
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorR. Dufour
    contributor authorA. Berlioz
    date accessioned2017-05-08T23:58:27Z
    date available2017-05-08T23:58:27Z
    date copyrightApril, 1998
    date issued1998
    identifier issn1048-9002
    identifier otherJVACEK-28843#461_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121459
    description abstractIn this paper the stability of the lateral dynamic behavior of a pinned-pinned, clamped-pinned and clamped-clamped beam under axial periodic force or torque is studied. The time-varying parameter equations are derived using the Rayleigh-Ritz method. The stability analysis of the solution is based on Floquet’s theory and investigated in detail. The Rayleigh-Ritz results are compared to those of a finite element modal reduction. It is shown that the lateral instabilities of the beam depend on the forcing frequency, the type of excitation and the boundary conditions. Several experimental tests enable the validation of the numerical results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParametric Instability of a Beam Due to Axial Excitations and to Boundary Conditions
    typeJournal Paper
    journal volume120
    journal issue2
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2893852
    journal fristpage461
    journal lastpage467
    identifier eissn1528-8927
    keywordsBoundary-value problems
    keywordsStability
    keywordsFinite element analysis
    keywordsForce
    keywordsTorque
    keywordsEquations AND Rayleigh-Ritz methods
    treeJournal of Vibration and Acoustics:;1998:;volume( 120 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian