Exact Modeling of the Spatial Rigid Body Inertia Using the Finite Element MethodSource: Journal of Vibration and Acoustics:;1998:;volume( 120 ):;issue: 003::page 650DOI: 10.1115/1.2893879Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: In the classical finite element literature beams and plates are not considered as isoparametric elements since infinitesimal rotations are used as nodal coordinates. As a consequence, exact modeling of an arbitrary rigid body displacement cannot be obtained, and rigid body motion does not lead to zero strain. In order to circumvent this problem in flexible multibody simulations, an intermediate element coordinate system , which has an origin rigidly attached to the origin of the deformable body coordinate system and has axes which are parallel to the axes of the element coordinate system in the undeformed configuration was introduced. Using this intermediate element coordinate system and the fact that conventional beam and plate shape functions can describe an arbitrary rigid body translation, an exact modeling of the rigid body inertia can be obtained. The large rigid body translation and rotational displacements can be described using a set of reference coordinates that define the location of the origin and the orientation of the deformable body coordinate system. On the other hand, as demonstrated in this investigation, the incremental finite element formulations do not lead to exact modeling of the spatial rigid body mass moments and products of inertia when the structures move as rigid bodies, and such formulations do not lead to the correct rigid body equations of motion. The correct equations of motion, however, can be obtained if the coordinates are defined in terms of global slopes. Using this new definition of the element coordinates, an absolute nodal coordinate formulation that leads to a constant mass matrix for the element can be developed. Using this formulation, in which no infinitesimal or finite rotations are used as nodal coordinates, beam and plate elements can be treated as isoparametric elements.
keyword(s): Inertia (Mechanics) , Modeling , Finite element methods , Finite element analysis , Equations of motion , Rotational inertia , Motion , Plates (structures) , Displacement , Functions , Shapes AND Engineering simulation ,
|
Collections
Show full item record
contributor author | A. P. Christensen | |
contributor author | A. A. Shabana | |
date accessioned | 2017-05-08T23:58:21Z | |
date available | 2017-05-08T23:58:21Z | |
date copyright | July, 1998 | |
date issued | 1998 | |
identifier issn | 1048-9002 | |
identifier other | JVACEK-28844#650_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/121406 | |
description abstract | In the classical finite element literature beams and plates are not considered as isoparametric elements since infinitesimal rotations are used as nodal coordinates. As a consequence, exact modeling of an arbitrary rigid body displacement cannot be obtained, and rigid body motion does not lead to zero strain. In order to circumvent this problem in flexible multibody simulations, an intermediate element coordinate system , which has an origin rigidly attached to the origin of the deformable body coordinate system and has axes which are parallel to the axes of the element coordinate system in the undeformed configuration was introduced. Using this intermediate element coordinate system and the fact that conventional beam and plate shape functions can describe an arbitrary rigid body translation, an exact modeling of the rigid body inertia can be obtained. The large rigid body translation and rotational displacements can be described using a set of reference coordinates that define the location of the origin and the orientation of the deformable body coordinate system. On the other hand, as demonstrated in this investigation, the incremental finite element formulations do not lead to exact modeling of the spatial rigid body mass moments and products of inertia when the structures move as rigid bodies, and such formulations do not lead to the correct rigid body equations of motion. The correct equations of motion, however, can be obtained if the coordinates are defined in terms of global slopes. Using this new definition of the element coordinates, an absolute nodal coordinate formulation that leads to a constant mass matrix for the element can be developed. Using this formulation, in which no infinitesimal or finite rotations are used as nodal coordinates, beam and plate elements can be treated as isoparametric elements. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Exact Modeling of the Spatial Rigid Body Inertia Using the Finite Element Method | |
type | Journal Paper | |
journal volume | 120 | |
journal issue | 3 | |
journal title | Journal of Vibration and Acoustics | |
identifier doi | 10.1115/1.2893879 | |
journal fristpage | 650 | |
journal lastpage | 657 | |
identifier eissn | 1528-8927 | |
keywords | Inertia (Mechanics) | |
keywords | Modeling | |
keywords | Finite element methods | |
keywords | Finite element analysis | |
keywords | Equations of motion | |
keywords | Rotational inertia | |
keywords | Motion | |
keywords | Plates (structures) | |
keywords | Displacement | |
keywords | Functions | |
keywords | Shapes AND Engineering simulation | |
tree | Journal of Vibration and Acoustics:;1998:;volume( 120 ):;issue: 003 | |
contenttype | Fulltext |