YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines

    Source: Journal of Turbomachinery:;1998:;volume( 120 ):;issue: 001::page 28
    Author:
    V. Schulte
    ,
    H. P. Hodson
    DOI: 10.1115/1.2841384
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The development of the unsteady suction side boundary layer of a highly loaded LP turbine blade has been investigated in a rectilinear cascade experiment. Upstream rotor wakes were simulated with a moving-bar wake generator. A variety of cases with different wake-passing frequencies, different wake strength, and different Reynolds numbers were tested. Boundary layer surveys have been obtained with a single hotwire probe. Wall shear stress has been investigated with surface-mounted hot-film gages. Losses have been measured. The suction surface boundary layer development of a modern highly loaded LP turbine blade is shown to be dominated by effects associated with unsteady wake-passing. Whereas without wakes the boundary layer features a large separation bubble at a typical cruise Reynolds number, the bubble was largely suppressed if subjected to unsteady wake-passing at a typical frequency and wake strength. Transitional patches and becalmed regions, induced by the wake, dominated the boundary layer development. The becalmed regions inhibited transition and separation and are shown to reduce the loss of the wake-affected boundary layer. An optimum wake-passing frequency exists at cruise Reynolds numbers. For a selected wake-passing frequency and wake strength, the profile loss is almost independent of Reynolds number. This demonstrates a potential to design highly loaded LP turbine profiles without suffering large losses at low Reynolds numbers.
    • Download: (986.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121349
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorV. Schulte
    contributor authorH. P. Hodson
    date accessioned2017-05-08T23:58:14Z
    date available2017-05-08T23:58:14Z
    date copyrightJanuary, 1998
    date issued1998
    identifier issn0889-504X
    identifier otherJOTUEI-28664#28_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121349
    description abstractThe development of the unsteady suction side boundary layer of a highly loaded LP turbine blade has been investigated in a rectilinear cascade experiment. Upstream rotor wakes were simulated with a moving-bar wake generator. A variety of cases with different wake-passing frequencies, different wake strength, and different Reynolds numbers were tested. Boundary layer surveys have been obtained with a single hotwire probe. Wall shear stress has been investigated with surface-mounted hot-film gages. Losses have been measured. The suction surface boundary layer development of a modern highly loaded LP turbine blade is shown to be dominated by effects associated with unsteady wake-passing. Whereas without wakes the boundary layer features a large separation bubble at a typical cruise Reynolds number, the bubble was largely suppressed if subjected to unsteady wake-passing at a typical frequency and wake strength. Transitional patches and becalmed regions, induced by the wake, dominated the boundary layer development. The becalmed regions inhibited transition and separation and are shown to reduce the loss of the wake-affected boundary layer. An optimum wake-passing frequency exists at cruise Reynolds numbers. For a selected wake-passing frequency and wake strength, the profile loss is almost independent of Reynolds number. This demonstrates a potential to design highly loaded LP turbine profiles without suffering large losses at low Reynolds numbers.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUnsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
    typeJournal Paper
    journal volume120
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2841384
    journal fristpage28
    journal lastpage35
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;1998:;volume( 120 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian