| contributor author | G. Rau | |
| contributor author | M. Çakan | |
| contributor author | D. Moeller | |
| contributor author | T. Arts | |
| date accessioned | 2017-05-08T23:58:13Z | |
| date available | 2017-05-08T23:58:13Z | |
| date copyright | April, 1998 | |
| date issued | 1998 | |
| identifier issn | 0889-504X | |
| identifier other | JOTUEI-28665#368_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/121340 | |
| description abstract | The local aerodynamic and heat transfer performance were measured in a rib-roughened square duct as a function of the rib pitch to height ratio. The blockage ratio of these square obstacles was 10 or 20 percent depending on whether they were placed on one single (1s) or on two opposite walls (2s). The Reynolds number, based on the channel mean velocity and hydraulic diameter, was fixed at 30,000. The aerodynamic description of the flow field was based on local pressure distributions along the ribbed and adjacent smooth walls as well as on two-dimensional LDV explorations in the channel symmetry plane and in two planes parallel to the ribbed wall(s). Local heat transfer distributions were obtained on the floor, between the ribs, and on the adjacent smooth side wall. Averaged parameters, such as friction factor and averaged heat transfer enhancement factor, were calculated from the local results and compared to correlations given in literature. This contribution showed that simple correlations derived from the law of the wall similarity and from the Reynolds analogy could not be applied for the present rib height-to-channel hydraulic diameter ratio (e/Dh = 0.1). The strong secondary flows resulted in a three-dimensional flow field with high gradients in the local heat transfer distributions on the smooth side walls. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel | |
| type | Journal Paper | |
| journal volume | 120 | |
| journal issue | 2 | |
| journal title | Journal of Turbomachinery | |
| identifier doi | 10.1115/1.2841415 | |
| journal fristpage | 368 | |
| journal lastpage | 375 | |
| identifier eissn | 1528-8900 | |
| keywords | Heat transfer | |
| keywords | Cooling | |
| keywords | Channels (Hydraulic engineering) | |
| keywords | Flow (Dynamics) | |
| keywords | Friction | |
| keywords | Pressure | |
| keywords | Reynolds number | |
| keywords | Ducts | |
| keywords | Gradients | |
| keywords | Laser Doppler anemometry AND Light trucks | |
| tree | Journal of Turbomachinery:;1998:;volume( 120 ):;issue: 002 | |
| contenttype | Fulltext | |