contributor author | N. Abuaf | |
contributor author | C. P. Lee | |
contributor author | R. S. Bunker | |
date accessioned | 2017-05-08T23:58:10Z | |
date available | 2017-05-08T23:58:10Z | |
date copyright | July, 1998 | |
date issued | 1998 | |
identifier issn | 0889-504X | |
identifier other | JOTUEI-28666#522_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/121306 | |
description abstract | Aerodynamic flow path losses and turbine airfoil gas side heat transfer are strongly affected by the gas side surface finish. For high aero efficiencies and reduced cooling requirements, airfoil designs dictate extensive surface finishing processes to produce smooth surfaces and enhance engine performance. The achievement of these requirements incurs additional manufacturing finishing costs over less strict requirements. The present work quantifies the heat transfer (and aero) performance differences of three cast airfoils with varying degrees of surface finish treatment. An airfoil, that was grit blast and Codep coated, produced an average roughness of 2.33 μm, one that was grit blast, tumbled, and aluminide coated produced 1.03 μm roughness, and another that received further postcoating polishing produced 0.81 μm roughness. Local heat transfer coefficients were experimentally measured with a transient technique in a linear cascade with a wide range of flow Reynolds numbers covering typical engine conditions. The measured heat transfer coefficients were used with a rough surface Reynolds analogy to determine the local skin friction coefficients, from which the drag forces and aero efficiencies were calculated. Results show that tumbling and polishing reduce the average roughness and improve performance. The largest differences are observed from the tumbling process, with smaller improvements realized from polishing. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils | |
type | Journal Paper | |
journal volume | 120 | |
journal issue | 3 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.2841749 | |
journal fristpage | 522 | |
journal lastpage | 529 | |
identifier eissn | 1528-8900 | |
keywords | Heat transfer | |
keywords | Surface roughness | |
keywords | Turbines | |
keywords | Airfoils | |
keywords | Polishing | |
keywords | Finishes | |
keywords | Heat transfer coefficients | |
keywords | Engines | |
keywords | Manufacturing | |
keywords | Drag (Fluid dynamics) | |
keywords | Reynolds number | |
keywords | Finishing | |
keywords | Cooling | |
keywords | Force | |
keywords | Flow (Dynamics) | |
keywords | Surface finishing | |
keywords | Aerodynamic flow | |
keywords | Cascades (Fluid dynamics) AND Skin friction (Fluid dynamics) | |
tree | Journal of Turbomachinery:;1998:;volume( 120 ):;issue: 003 | |
contenttype | Fulltext | |