YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects

    Source: Journal of Turbomachinery:;1998:;volume( 120 ):;issue: 004::page 791
    Author:
    S. W. Burd
    ,
    R. W. Kaszeta
    ,
    T. W. Simon
    DOI: 10.1115/1.2841791
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hot-wire anemometry measurements of simulated film cooling are presented to document the influence of the free-stream turbulence intensity and film cooling hole length-to-diameter ratio on mean velocity and on turbulence intensity. Measurements are taken in the zone where the coolant and free-stream flows mix. Flow from one row of film cooling holes with a streamwise injection of 35 deg and no lateral injection and with a coolant-to-free-stream flow velocity ratio of 1.0 is investigated under free-stream turbulence levels of 0.5 and 12 percent. The coolant-to-free-stream density ratio is unity. Two length-to-diameter ratios for the film cooling holes, 2.3 and 7.0, are tested. The Measurements document that under low free-stream turbulence conditions pronounced differences exist in the flowfield between L/D= 7.0 and 2.3. The difference between L/D cases are less prominent at high free-stream turbulence intensities. Generally, Short-L/D injection results in “jetting” of the coolant farther into the free-stream flow and enhanced mixing. Other changes in the flowfield attributable to a rise in free-stream turbulence intensity to engine-representative conditions are documented.
    keyword(s): Flow (Dynamics) , Cooling , Measurement , Turbulence , Coolants , Density , Engines AND Wire ,
    • Download: (2.654Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121276
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorS. W. Burd
    contributor authorR. W. Kaszeta
    contributor authorT. W. Simon
    date accessioned2017-05-08T23:58:05Z
    date available2017-05-08T23:58:05Z
    date copyrightOctober, 1998
    date issued1998
    identifier issn0889-504X
    identifier otherJOTUEI-28667#791_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121276
    description abstractHot-wire anemometry measurements of simulated film cooling are presented to document the influence of the free-stream turbulence intensity and film cooling hole length-to-diameter ratio on mean velocity and on turbulence intensity. Measurements are taken in the zone where the coolant and free-stream flows mix. Flow from one row of film cooling holes with a streamwise injection of 35 deg and no lateral injection and with a coolant-to-free-stream flow velocity ratio of 1.0 is investigated under free-stream turbulence levels of 0.5 and 12 percent. The coolant-to-free-stream density ratio is unity. Two length-to-diameter ratios for the film cooling holes, 2.3 and 7.0, are tested. The Measurements document that under low free-stream turbulence conditions pronounced differences exist in the flowfield between L/D= 7.0 and 2.3. The difference between L/D cases are less prominent at high free-stream turbulence intensities. Generally, Short-L/D injection results in “jetting” of the coolant farther into the free-stream flow and enhanced mixing. Other changes in the flowfield attributable to a rise in free-stream turbulence intensity to engine-representative conditions are documented.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeasurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
    typeJournal Paper
    journal volume120
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2841791
    journal fristpage791
    journal lastpage798
    identifier eissn1528-8900
    keywordsFlow (Dynamics)
    keywordsCooling
    keywordsMeasurement
    keywordsTurbulence
    keywordsCoolants
    keywordsDensity
    keywordsEngines AND Wire
    treeJournal of Turbomachinery:;1998:;volume( 120 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian