YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aspects of Vane Film Cooling With High Turbulence: Part II—Adiabatic Effectiveness

    Source: Journal of Turbomachinery:;1998:;volume( 120 ):;issue: 004::page 777
    Author:
    F. E. Ames
    DOI: 10.1115/1.2841789
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A four-vane subsonic cascade was used to investigate the influence of turbulence on vane film cooling distributions. The influence of film injection on vane heat transfer distributions in the presence of high turbulence was examined in part I of this paper. Vane effectiveness distributions were documented in the presence of a low level of turbulence (1 percent) and were used to contrast results taken at a high level (12 percent) of large-scale turbulence. All data were taken at a density ratio of about 1. The three geometries chosen to study included one row and two staggered rows of downstream film cooling on both the suction and pressure surfaces as well as a showerhead array. Turbulence was found to have a moderate influence on pressure surface film cooling, particularly at the lower velocity ratios. The strong pressure gradients on the pressure surface of the vane were also found to alter film cooling distributions substantially. At lower velocity ratios, effectiveness distributions for two staggered rows of holes could be predicted well using data from one row superposed. At higher velocity ratios the two staggered rows produced significantly higher levels of effectiveness than values estimated from single row data superposed. Turbulence was also found to reduce effectiveness levels produced by showerhead film cooling substantially.
    keyword(s): Cooling , Turbulence , Pressure , Thin films , Heat transfer , Density , Suction , Cascades (Fluid dynamics) AND Pressure gradient ,
    • Download: (948.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aspects of Vane Film Cooling With High Turbulence: Part II—Adiabatic Effectiveness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121274
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorF. E. Ames
    date accessioned2017-05-08T23:58:05Z
    date available2017-05-08T23:58:05Z
    date copyrightOctober, 1998
    date issued1998
    identifier issn0889-504X
    identifier otherJOTUEI-28667#777_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121274
    description abstractA four-vane subsonic cascade was used to investigate the influence of turbulence on vane film cooling distributions. The influence of film injection on vane heat transfer distributions in the presence of high turbulence was examined in part I of this paper. Vane effectiveness distributions were documented in the presence of a low level of turbulence (1 percent) and were used to contrast results taken at a high level (12 percent) of large-scale turbulence. All data were taken at a density ratio of about 1. The three geometries chosen to study included one row and two staggered rows of downstream film cooling on both the suction and pressure surfaces as well as a showerhead array. Turbulence was found to have a moderate influence on pressure surface film cooling, particularly at the lower velocity ratios. The strong pressure gradients on the pressure surface of the vane were also found to alter film cooling distributions substantially. At lower velocity ratios, effectiveness distributions for two staggered rows of holes could be predicted well using data from one row superposed. At higher velocity ratios the two staggered rows produced significantly higher levels of effectiveness than values estimated from single row data superposed. Turbulence was also found to reduce effectiveness levels produced by showerhead film cooling substantially.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAspects of Vane Film Cooling With High Turbulence: Part II—Adiabatic Effectiveness
    typeJournal Paper
    journal volume120
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2841789
    journal fristpage777
    journal lastpage784
    identifier eissn1528-8900
    keywordsCooling
    keywordsTurbulence
    keywordsPressure
    keywordsThin films
    keywordsHeat transfer
    keywordsDensity
    keywordsSuction
    keywordsCascades (Fluid dynamics) AND Pressure gradient
    treeJournal of Turbomachinery:;1998:;volume( 120 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian