YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Meniscus Forces and Profiles: Theory and Its Applications to Liquid-Mediated Interfaces

    Source: Journal of Tribology:;1998:;volume( 120 ):;issue: 002::page 358
    Author:
    Chao Gao
    ,
    Peihua Dai
    ,
    Andy Homola
    ,
    Joel Weiss
    DOI: 10.1115/1.2834435
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A theory for obtaining meniscus forces and profiles for any given liquid-mediated interface is presented that includes the effects of surface interactions, adsorption and evaporation of liquid films. The meniscus force is obtained from the derivative of the total free energy of liquid-mediated interface, which requires the meniscus profile to be known. The meniscus profile is the solution of a second-order differential equation, as derived from Pascal’s law for static incompressible liquids with inclusion of surface interactions. For nonvolatile liquid films, the total liquid amount at the interface is a conserved quantity, whereas for volatile liquids, the liquid films are in thermodynamic equilibrium with their respective vapor phase. Two typical types of initial liquid conditions are considered. Type I represents the case in which one surface is wet and the other is initially dry, having a finite contact angle with the liquid. Type II represents the situation in which both surfaces are wet by either a liquid or by two different liquids before making contact. If two or more types of liquids are involved at the interface, miscibility of the liquids and interactions due to other liquid(s) have to be also considered. For contacts with azimuthal geometry, which is merely a mathematical convenience, such as ellipsoidal/spherical, conical or crater, the theory generates several analytical formulae for calculating meniscus forces without involving meniscus profiles. These formulae can be handily applied to various surface probes techniques such as Scanning Probe Microscopy or Surface Force Apparatus. The proposed theory is also applicable to “meniscus rings” formed around crater geometry, such as encountered in laser-textured magnetic disks. In this case, the outer meniscus ring can be asymmetric to the inner meniscus ring if no liquid passage exists between the inner and outer meniscus ring. Even for the case of spherical contact geometry, the calculated meniscus profile is very nonspherical with a much larger volume than that of the widely assumed spherical meniscus profile for Type I conditions, leading to an under-estimation of the meniscus force in the previous models. It is found that for a spherical or a crater contact geometry, the surface interactions have little effect on the meniscus force provided the lateral meniscus dimension is much smaller than the radius of the sphere or of the crater. However the surface interactions have a large effect on the meniscus force for other contact geometries, such as conical contact geometry. The calculated meniscus forces are compared with the normal component of the stiction force measured at the laser textured surfaces and good agreement is found. The calculated meniscus profiles are also found in good agreement with that measured using light interferometer technique between two cross cylinders. One very interesting finding of our theory is that the meniscus volume grows first and may then shrink, as observed experimentally by others, because the initially dry surface become wetted and the boundary conditions change over from Type I to Type II.
    keyword(s): Force , Geometry , Liquid films , Formulas , Lasers , Dimensions , Interferometers , Equilibrium (Physics) , Scanning probe microscopy , Differential equations , Evaporation , Disks , Boundary-value problems , Cylinders , Vapors , Probes AND Stiction ,
    • Download: (1.696Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Meniscus Forces and Profiles: Theory and Its Applications to Liquid-Mediated Interfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121217
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorChao Gao
    contributor authorPeihua Dai
    contributor authorAndy Homola
    contributor authorJoel Weiss
    date accessioned2017-05-08T23:57:59Z
    date available2017-05-08T23:57:59Z
    date copyrightApril, 1998
    date issued1998
    identifier issn0742-4787
    identifier otherJOTRE9-28675#358_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121217
    description abstractA theory for obtaining meniscus forces and profiles for any given liquid-mediated interface is presented that includes the effects of surface interactions, adsorption and evaporation of liquid films. The meniscus force is obtained from the derivative of the total free energy of liquid-mediated interface, which requires the meniscus profile to be known. The meniscus profile is the solution of a second-order differential equation, as derived from Pascal’s law for static incompressible liquids with inclusion of surface interactions. For nonvolatile liquid films, the total liquid amount at the interface is a conserved quantity, whereas for volatile liquids, the liquid films are in thermodynamic equilibrium with their respective vapor phase. Two typical types of initial liquid conditions are considered. Type I represents the case in which one surface is wet and the other is initially dry, having a finite contact angle with the liquid. Type II represents the situation in which both surfaces are wet by either a liquid or by two different liquids before making contact. If two or more types of liquids are involved at the interface, miscibility of the liquids and interactions due to other liquid(s) have to be also considered. For contacts with azimuthal geometry, which is merely a mathematical convenience, such as ellipsoidal/spherical, conical or crater, the theory generates several analytical formulae for calculating meniscus forces without involving meniscus profiles. These formulae can be handily applied to various surface probes techniques such as Scanning Probe Microscopy or Surface Force Apparatus. The proposed theory is also applicable to “meniscus rings” formed around crater geometry, such as encountered in laser-textured magnetic disks. In this case, the outer meniscus ring can be asymmetric to the inner meniscus ring if no liquid passage exists between the inner and outer meniscus ring. Even for the case of spherical contact geometry, the calculated meniscus profile is very nonspherical with a much larger volume than that of the widely assumed spherical meniscus profile for Type I conditions, leading to an under-estimation of the meniscus force in the previous models. It is found that for a spherical or a crater contact geometry, the surface interactions have little effect on the meniscus force provided the lateral meniscus dimension is much smaller than the radius of the sphere or of the crater. However the surface interactions have a large effect on the meniscus force for other contact geometries, such as conical contact geometry. The calculated meniscus forces are compared with the normal component of the stiction force measured at the laser textured surfaces and good agreement is found. The calculated meniscus profiles are also found in good agreement with that measured using light interferometer technique between two cross cylinders. One very interesting finding of our theory is that the meniscus volume grows first and may then shrink, as observed experimentally by others, because the initially dry surface become wetted and the boundary conditions change over from Type I to Type II.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeniscus Forces and Profiles: Theory and Its Applications to Liquid-Mediated Interfaces
    typeJournal Paper
    journal volume120
    journal issue2
    journal titleJournal of Tribology
    identifier doi10.1115/1.2834435
    journal fristpage358
    journal lastpage368
    identifier eissn1528-8897
    keywordsForce
    keywordsGeometry
    keywordsLiquid films
    keywordsFormulas
    keywordsLasers
    keywordsDimensions
    keywordsInterferometers
    keywordsEquilibrium (Physics)
    keywordsScanning probe microscopy
    keywordsDifferential equations
    keywordsEvaporation
    keywordsDisks
    keywordsBoundary-value problems
    keywordsCylinders
    keywordsVapors
    keywordsProbes AND Stiction
    treeJournal of Tribology:;1998:;volume( 120 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian