YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Geochemical Partitioning of Metals in Spent Drilling Fluid Solids

    Source: Journal of Energy Resources Technology:;1998:;volume( 120 ):;issue: 003::page 208
    Author:
    L. E. Deuel
    ,
    G. H. Holliday
    DOI: 10.1115/1.2795037
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Metals in oil and gas fluids have been of concern to the environmental and industrial communities since 1976. As a result, metals in 31 spent drilling fluids representative of the major oil and gas production provinces in the Continental United States, were fractionated into exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter , and residual forms using a sequential extraction (summation of fractions) technique. Bioavailability and mobility of metals in solid matrices follow in sequence of the operational defined fractions with chemical reactivity decreasing in the order of exchangeable > bound to carbonate > bound to Fe-Mn oxide > bound to organic matter > residual fractions. Metals evaluated in this study include arsenic, barium, cadmium, chromium, lead, and zinc. The summation of fractions was compared to independent total metals analysis using the United States Environmental Protection Agency (USEPA) SW-846 Method 3050 digest procedure to evaluate metal recoveries. No difference was observed in the summation of fractions and EPA Method 3050 total metal values for arsenic, barium, and cadmium. EPA Method 3050 digest was about 28 percent lower in chromium, and about 19 percent lower in lead and 16 percent lower in zinc than the total by summation of fractions. Almost all of the barium (95.6 percent) was recovered in the residual fraction. Arsenic was recovered primarily in the residual fraction (74.3 percent) and the Fe-Mn oxide fraction (16.1 percent). The highest quantity of cadmium was recovered in the residual fraction (43.3 percent), followed by the bound to organic (27.9 percent), and bound to Fe-Mn oxide (21.1 percent) fractions. Chromium was observed primarily in the residual (40.4 percent) and bound to Fe-Mn oxide (34 percent) fractions. Lead was distributed primarily in the bound to Fe-Mn oxide (49.3 percent), and residual (27 percent) fractions. Zinc was almost equally distributed in the bound to organic (36.2 percent), and bound to Fe-Mn oxide (33.1 percent) fractions. Cadmium (3.9 percent) and arsenic (2.7 percent) were the only metals with an exchangeable fraction >1 percent of the total. Low total and/or low exchangeable metal concentrations ultimately control the bioavailability and mobility of metals in spent drilling solids and limit the potential for an adverse impact on the environment.
    keyword(s): Fluids , Solids , Metals , Drilling , Matter AND Environmental Protection Agency ,
    • Download: (725.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Geochemical Partitioning of Metals in Spent Drilling Fluid Solids

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/120312
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorL. E. Deuel
    contributor authorG. H. Holliday
    date accessioned2017-05-08T23:56:23Z
    date available2017-05-08T23:56:23Z
    date copyrightSeptember, 1998
    date issued1998
    identifier issn0195-0738
    identifier otherJERTD2-26477#208_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/120312
    description abstractMetals in oil and gas fluids have been of concern to the environmental and industrial communities since 1976. As a result, metals in 31 spent drilling fluids representative of the major oil and gas production provinces in the Continental United States, were fractionated into exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter , and residual forms using a sequential extraction (summation of fractions) technique. Bioavailability and mobility of metals in solid matrices follow in sequence of the operational defined fractions with chemical reactivity decreasing in the order of exchangeable > bound to carbonate > bound to Fe-Mn oxide > bound to organic matter > residual fractions. Metals evaluated in this study include arsenic, barium, cadmium, chromium, lead, and zinc. The summation of fractions was compared to independent total metals analysis using the United States Environmental Protection Agency (USEPA) SW-846 Method 3050 digest procedure to evaluate metal recoveries. No difference was observed in the summation of fractions and EPA Method 3050 total metal values for arsenic, barium, and cadmium. EPA Method 3050 digest was about 28 percent lower in chromium, and about 19 percent lower in lead and 16 percent lower in zinc than the total by summation of fractions. Almost all of the barium (95.6 percent) was recovered in the residual fraction. Arsenic was recovered primarily in the residual fraction (74.3 percent) and the Fe-Mn oxide fraction (16.1 percent). The highest quantity of cadmium was recovered in the residual fraction (43.3 percent), followed by the bound to organic (27.9 percent), and bound to Fe-Mn oxide (21.1 percent) fractions. Chromium was observed primarily in the residual (40.4 percent) and bound to Fe-Mn oxide (34 percent) fractions. Lead was distributed primarily in the bound to Fe-Mn oxide (49.3 percent), and residual (27 percent) fractions. Zinc was almost equally distributed in the bound to organic (36.2 percent), and bound to Fe-Mn oxide (33.1 percent) fractions. Cadmium (3.9 percent) and arsenic (2.7 percent) were the only metals with an exchangeable fraction >1 percent of the total. Low total and/or low exchangeable metal concentrations ultimately control the bioavailability and mobility of metals in spent drilling solids and limit the potential for an adverse impact on the environment.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGeochemical Partitioning of Metals in Spent Drilling Fluid Solids
    typeJournal Paper
    journal volume120
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.2795037
    journal fristpage208
    journal lastpage214
    identifier eissn1528-8994
    keywordsFluids
    keywordsSolids
    keywordsMetals
    keywordsDrilling
    keywordsMatter AND Environmental Protection Agency
    treeJournal of Energy Resources Technology:;1998:;volume( 120 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian