contributor author | M. Leung | |
contributor author | C. K. Hsieh | |
contributor author | D. Y. Goswami | |
date accessioned | 2017-05-08T23:54:44Z | |
date available | 2017-05-08T23:54:44Z | |
date copyright | October, 1997 | |
date issued | 1997 | |
identifier issn | 0742-4787 | |
identifier other | JOTRE9-28672#846_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/119414 | |
description abstract | In theoretical modeling of contact mechanics, a homogeneously, isotropically rough surface is usually assumed to be a flat plane covered with asperities of a Gaussian summit-height distribution. This assumption yields satisfactory results between theoretical predictions and experimental measurements of the physical characteristics, such as thermal/electrical contact conductance and friction coefficient. However, lack of theoretical basis of this assumption motivates further study in surface modeling. This paper presents a theoretical investigation by statistical mechanics to determine surface roughness in terms of the most probable distribution of surface asperities. Based upon the surface roughness measurements as statistical constraints, the Boltzmann statistical model derives a distribution equivalent to Gaussian. The Boltzmann statistical mechanics derivation in this paper provides a rigorous validation of the Gaussian summit-height assumption presently in use for study of rough surfaces. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Application of Boltzmann Statistical Mechanics in the Validation of the Gaussian Summit-Height Distribution in Rough Surfaces | |
type | Journal Paper | |
journal volume | 119 | |
journal issue | 4 | |
journal title | Journal of Tribology | |
identifier doi | 10.1115/1.2833895 | |
journal fristpage | 846 | |
journal lastpage | 850 | |
identifier eissn | 1528-8897 | |
keywords | Statistical mechanics | |
keywords | Surface roughness | |
keywords | Measurement | |
keywords | Modeling | |
keywords | Friction | |
keywords | Electrical conductance AND Contact mechanics | |
tree | Journal of Tribology:;1997:;volume( 119 ):;issue: 004 | |
contenttype | Fulltext | |