YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fracture Analysis of Multiple Cracks in a Spinning Cylinder Experiment

    Source: Journal of Pressure Vessel Technology:;1997:;volume( 119 ):;issue: 002::page 232
    Author:
    J. A. Keeney
    ,
    B. R. Bass
    DOI: 10.1115/1.2842290
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents finite-element analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The NESC was organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards. The objective of the NESC-1 project is to focus on a complete procedure for assessing the structural integrity of aged reactor pressure vessels. Current plans for the testing program call for two large cracks to be installed in the NESC-1 cylinder separated by 90 deg. Three-dimensional finite-element analyses were carried out to determine: 1) the extent of interaction between multiple cracks in the cylinder; and 2) the predicted effects of using an initial cylinder temperature of 295°C and coolant temperature of 5°C in the experiment. The cylinder was modeled with innersurface through-clad cracks having a depth of 74 mm and aspect ratio of 2:1. The cylinder specimen was subjected to centrifugal loading followed by a thermal shock and analyzed with a thermo-elastic-plastic material model. The analytical results indicate that the stress-intensity factor changes less than 0.2 percent between a model with one crack and a model with four cracks evenly spaced around the circumference. Cleavage initiation is likely to be achieved for initial and coolant temperatures of 295 and 5°C, respectively.
    • Download: (412.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fracture Analysis of Multiple Cracks in a Spinning Cylinder Experiment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/119284
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorJ. A. Keeney
    contributor authorB. R. Bass
    date accessioned2017-05-08T23:54:31Z
    date available2017-05-08T23:54:31Z
    date copyrightMay, 1997
    date issued1997
    identifier issn0094-9930
    identifier otherJPVTAS-28376#232_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/119284
    description abstractThis paper presents finite-element analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The NESC was organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards. The objective of the NESC-1 project is to focus on a complete procedure for assessing the structural integrity of aged reactor pressure vessels. Current plans for the testing program call for two large cracks to be installed in the NESC-1 cylinder separated by 90 deg. Three-dimensional finite-element analyses were carried out to determine: 1) the extent of interaction between multiple cracks in the cylinder; and 2) the predicted effects of using an initial cylinder temperature of 295°C and coolant temperature of 5°C in the experiment. The cylinder was modeled with innersurface through-clad cracks having a depth of 74 mm and aspect ratio of 2:1. The cylinder specimen was subjected to centrifugal loading followed by a thermal shock and analyzed with a thermo-elastic-plastic material model. The analytical results indicate that the stress-intensity factor changes less than 0.2 percent between a model with one crack and a model with four cracks evenly spaced around the circumference. Cleavage initiation is likely to be achieved for initial and coolant temperatures of 295 and 5°C, respectively.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFracture Analysis of Multiple Cracks in a Spinning Cylinder Experiment
    typeJournal Paper
    journal volume119
    journal issue2
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.2842290
    journal fristpage232
    journal lastpage235
    identifier eissn1528-8978
    treeJournal of Pressure Vessel Technology:;1997:;volume( 119 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian