YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Weight-Saving Plastic Design of Pressure Vessels

    Source: Journal of Pressure Vessel Technology:;1997:;volume( 119 ):;issue: 002::page 161
    Author:
    J. S. Porowski
    ,
    R. H. Reid
    ,
    W. J. O’Donnell
    DOI: 10.1115/1.2842278
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Within the last two decades, the use of elastic finite element analyses to demonstrate design compliance with the rules of the ASME Code has become a generally accepted engineering practice. Linearized stresses from these analyses are commonly used to evaluate primary stresses. For redundant structures or complex structural details, the use of such analyses, instead of simple equilibrium models, often results in significant overconservatism. Direct use of finite element results is often preferred because equilibrium solutions are not unique and effective equilibrium models are not easily constructed for complex three-dimensional structures. However, finite element analyses include secondary stresses, even for pressure, mechanical, and shock loading. For primary stress evaluation, the ASME Code allows the use of inelastic methods based on lower-bound solutions and plastic analysis. For primary stresses, the Code requires equilibrium to be satisfied without violating the yield strength of the material. The use of finite element inelastic analysis to partition mechanically induced stresses into the primary and secondary categories was introduced by Porowski et al. (1993). The latter provides a detailed discussion of the technical approach and the results for the axisymmetric junction between the plate and shell in a pressure vessel. This example was selected by the Session Organizer as a benchmark case to compare the efficiency of various analytical approaches presented at the Session. The authors have since used this approach to design more efficient structures. The practical application of this method to reduce the weight of complex redundant structures designed to meet primary stress limits is described herein for a more complex three-dimensional case. Plastic design utilizes the ability of actual materials to find the most efficient load distribution. A heat exchanger subjected to pressure, accelerations, and nozzle external loads is evaluated as a practical example. The results of elastic analyses are compared with those obtained by inelastic analyses. It is shown that inelastic analyses can be used effectively to reduce the weight of structures using only modern PCs for the engineering computations, as illustrated in this paper.
    • Download: (627.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Weight-Saving Plastic Design of Pressure Vessels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/119271
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorJ. S. Porowski
    contributor authorR. H. Reid
    contributor authorW. J. O’Donnell
    date accessioned2017-05-08T23:54:30Z
    date available2017-05-08T23:54:30Z
    date copyrightMay, 1997
    date issued1997
    identifier issn0094-9930
    identifier otherJPVTAS-28376#161_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/119271
    description abstractWithin the last two decades, the use of elastic finite element analyses to demonstrate design compliance with the rules of the ASME Code has become a generally accepted engineering practice. Linearized stresses from these analyses are commonly used to evaluate primary stresses. For redundant structures or complex structural details, the use of such analyses, instead of simple equilibrium models, often results in significant overconservatism. Direct use of finite element results is often preferred because equilibrium solutions are not unique and effective equilibrium models are not easily constructed for complex three-dimensional structures. However, finite element analyses include secondary stresses, even for pressure, mechanical, and shock loading. For primary stress evaluation, the ASME Code allows the use of inelastic methods based on lower-bound solutions and plastic analysis. For primary stresses, the Code requires equilibrium to be satisfied without violating the yield strength of the material. The use of finite element inelastic analysis to partition mechanically induced stresses into the primary and secondary categories was introduced by Porowski et al. (1993). The latter provides a detailed discussion of the technical approach and the results for the axisymmetric junction between the plate and shell in a pressure vessel. This example was selected by the Session Organizer as a benchmark case to compare the efficiency of various analytical approaches presented at the Session. The authors have since used this approach to design more efficient structures. The practical application of this method to reduce the weight of complex redundant structures designed to meet primary stress limits is described herein for a more complex three-dimensional case. Plastic design utilizes the ability of actual materials to find the most efficient load distribution. A heat exchanger subjected to pressure, accelerations, and nozzle external loads is evaluated as a practical example. The results of elastic analyses are compared with those obtained by inelastic analyses. It is shown that inelastic analyses can be used effectively to reduce the weight of structures using only modern PCs for the engineering computations, as illustrated in this paper.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleWeight-Saving Plastic Design of Pressure Vessels
    typeJournal Paper
    journal volume119
    journal issue2
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.2842278
    journal fristpage161
    journal lastpage166
    identifier eissn1528-8978
    treeJournal of Pressure Vessel Technology:;1997:;volume( 119 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian