YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat-Affected Zone Toughness of a TMCP Steel Designed for Low-Temperature Applications

    Source: Journal of Offshore Mechanics and Arctic Engineering:;1997:;volume( 119 ):;issue: 002::page 134
    Author:
    J. A. Gianetto
    ,
    J. E. M. Braid
    ,
    J. T. Bowker
    ,
    W. R. Tyson
    DOI: 10.1115/1.2829055
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective of this investigation was to provide a detailed evaluation of the heat-affected zone (HAZ) toughness of a high-strength TMCP steel designed for low-temperature applications. The results from both Charpy-vee notch (CVN) and cracktip-opening displacement (CTOD) tests conducted on two straight-walled narrow groove welds, produced at energy inputs of 1.5 and 3.0 kJ/mm, show that significantly lower toughness was exhibited by the grain-coarsened HAZ (GCHAZ) compared with the intercritical HAZ (ICHAZ) region. This is explained based on the overall GCHAZ microstructure, and the initiation mechanism which caused failure. For the particular TMCP steel investigated in this study very good ICHAZ toughness properties were recorded using both HAZ Charpy and CTOD tests. In general, this was attributable to the low hardness, relatively fine ferrite microstructure, and the formation of secondary microphases that were not overly detrimental to the toughness. The lower-bound GCHAZ CTOD results obtained for both welds (KA W-L and KA W-H) did not meet the targeted requirement of δ = 0.07 mm at −50°C. It was found in both welds that low CTOD toughness was associated with the initiation of fracture from nonmetallic inclusions, which were complex oxides containing Ce, La, and S. The sites were located in the subcritical GCHAZ (SCGCHAZ) region in the case of the 1.5 kJ/mm weld and in the GCHAZ for the 3.0 kJ/mm weld. Some variation in CVN toughness was observed at different through-thickness locations. Toughness was lowest for the GCHAZ of the weld deposited at 3.0 kJ/mm and was related to the proportion of GCHAZ being sampled, which was ~55 percent for the bottom compared to 25–30 percent for that of the top location. Recommendations are proposed on the preferred practices and criteria that should be used in establishing guidelines and specifications for evaluating the HAZ toughness of candidate steels for construction of Arctic class ships.
    • Download: (2.560Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat-Affected Zone Toughness of a TMCP Steel Designed for Low-Temperature Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/119207
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorJ. A. Gianetto
    contributor authorJ. E. M. Braid
    contributor authorJ. T. Bowker
    contributor authorW. R. Tyson
    date accessioned2017-05-08T23:54:25Z
    date available2017-05-08T23:54:25Z
    date copyrightMay, 1997
    date issued1997
    identifier issn0892-7219
    identifier otherJMOEEX-28117#134_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/119207
    description abstractThe objective of this investigation was to provide a detailed evaluation of the heat-affected zone (HAZ) toughness of a high-strength TMCP steel designed for low-temperature applications. The results from both Charpy-vee notch (CVN) and cracktip-opening displacement (CTOD) tests conducted on two straight-walled narrow groove welds, produced at energy inputs of 1.5 and 3.0 kJ/mm, show that significantly lower toughness was exhibited by the grain-coarsened HAZ (GCHAZ) compared with the intercritical HAZ (ICHAZ) region. This is explained based on the overall GCHAZ microstructure, and the initiation mechanism which caused failure. For the particular TMCP steel investigated in this study very good ICHAZ toughness properties were recorded using both HAZ Charpy and CTOD tests. In general, this was attributable to the low hardness, relatively fine ferrite microstructure, and the formation of secondary microphases that were not overly detrimental to the toughness. The lower-bound GCHAZ CTOD results obtained for both welds (KA W-L and KA W-H) did not meet the targeted requirement of δ = 0.07 mm at −50°C. It was found in both welds that low CTOD toughness was associated with the initiation of fracture from nonmetallic inclusions, which were complex oxides containing Ce, La, and S. The sites were located in the subcritical GCHAZ (SCGCHAZ) region in the case of the 1.5 kJ/mm weld and in the GCHAZ for the 3.0 kJ/mm weld. Some variation in CVN toughness was observed at different through-thickness locations. Toughness was lowest for the GCHAZ of the weld deposited at 3.0 kJ/mm and was related to the proportion of GCHAZ being sampled, which was ~55 percent for the bottom compared to 25–30 percent for that of the top location. Recommendations are proposed on the preferred practices and criteria that should be used in establishing guidelines and specifications for evaluating the HAZ toughness of candidate steels for construction of Arctic class ships.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat-Affected Zone Toughness of a TMCP Steel Designed for Low-Temperature Applications
    typeJournal Paper
    journal volume119
    journal issue2
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.2829055
    journal fristpage134
    journal lastpage144
    identifier eissn1528-896X
    treeJournal of Offshore Mechanics and Arctic Engineering:;1997:;volume( 119 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian