Heat-Affected Zone Toughness of a TMCP Steel Designed for Low-Temperature ApplicationsSource: Journal of Offshore Mechanics and Arctic Engineering:;1997:;volume( 119 ):;issue: 002::page 134DOI: 10.1115/1.2829055Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The objective of this investigation was to provide a detailed evaluation of the heat-affected zone (HAZ) toughness of a high-strength TMCP steel designed for low-temperature applications. The results from both Charpy-vee notch (CVN) and cracktip-opening displacement (CTOD) tests conducted on two straight-walled narrow groove welds, produced at energy inputs of 1.5 and 3.0 kJ/mm, show that significantly lower toughness was exhibited by the grain-coarsened HAZ (GCHAZ) compared with the intercritical HAZ (ICHAZ) region. This is explained based on the overall GCHAZ microstructure, and the initiation mechanism which caused failure. For the particular TMCP steel investigated in this study very good ICHAZ toughness properties were recorded using both HAZ Charpy and CTOD tests. In general, this was attributable to the low hardness, relatively fine ferrite microstructure, and the formation of secondary microphases that were not overly detrimental to the toughness. The lower-bound GCHAZ CTOD results obtained for both welds (KA W-L and KA W-H) did not meet the targeted requirement of δ = 0.07 mm at −50°C. It was found in both welds that low CTOD toughness was associated with the initiation of fracture from nonmetallic inclusions, which were complex oxides containing Ce, La, and S. The sites were located in the subcritical GCHAZ (SCGCHAZ) region in the case of the 1.5 kJ/mm weld and in the GCHAZ for the 3.0 kJ/mm weld. Some variation in CVN toughness was observed at different through-thickness locations. Toughness was lowest for the GCHAZ of the weld deposited at 3.0 kJ/mm and was related to the proportion of GCHAZ being sampled, which was ~55 percent for the bottom compared to 25–30 percent for that of the top location. Recommendations are proposed on the preferred practices and criteria that should be used in establishing guidelines and specifications for evaluating the HAZ toughness of candidate steels for construction of Arctic class ships.
|
Show full item record
| contributor author | J. A. Gianetto | |
| contributor author | J. E. M. Braid | |
| contributor author | J. T. Bowker | |
| contributor author | W. R. Tyson | |
| date accessioned | 2017-05-08T23:54:25Z | |
| date available | 2017-05-08T23:54:25Z | |
| date copyright | May, 1997 | |
| date issued | 1997 | |
| identifier issn | 0892-7219 | |
| identifier other | JMOEEX-28117#134_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/119207 | |
| description abstract | The objective of this investigation was to provide a detailed evaluation of the heat-affected zone (HAZ) toughness of a high-strength TMCP steel designed for low-temperature applications. The results from both Charpy-vee notch (CVN) and cracktip-opening displacement (CTOD) tests conducted on two straight-walled narrow groove welds, produced at energy inputs of 1.5 and 3.0 kJ/mm, show that significantly lower toughness was exhibited by the grain-coarsened HAZ (GCHAZ) compared with the intercritical HAZ (ICHAZ) region. This is explained based on the overall GCHAZ microstructure, and the initiation mechanism which caused failure. For the particular TMCP steel investigated in this study very good ICHAZ toughness properties were recorded using both HAZ Charpy and CTOD tests. In general, this was attributable to the low hardness, relatively fine ferrite microstructure, and the formation of secondary microphases that were not overly detrimental to the toughness. The lower-bound GCHAZ CTOD results obtained for both welds (KA W-L and KA W-H) did not meet the targeted requirement of δ = 0.07 mm at −50°C. It was found in both welds that low CTOD toughness was associated with the initiation of fracture from nonmetallic inclusions, which were complex oxides containing Ce, La, and S. The sites were located in the subcritical GCHAZ (SCGCHAZ) region in the case of the 1.5 kJ/mm weld and in the GCHAZ for the 3.0 kJ/mm weld. Some variation in CVN toughness was observed at different through-thickness locations. Toughness was lowest for the GCHAZ of the weld deposited at 3.0 kJ/mm and was related to the proportion of GCHAZ being sampled, which was ~55 percent for the bottom compared to 25–30 percent for that of the top location. Recommendations are proposed on the preferred practices and criteria that should be used in establishing guidelines and specifications for evaluating the HAZ toughness of candidate steels for construction of Arctic class ships. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Heat-Affected Zone Toughness of a TMCP Steel Designed for Low-Temperature Applications | |
| type | Journal Paper | |
| journal volume | 119 | |
| journal issue | 2 | |
| journal title | Journal of Offshore Mechanics and Arctic Engineering | |
| identifier doi | 10.1115/1.2829055 | |
| journal fristpage | 134 | |
| journal lastpage | 144 | |
| identifier eissn | 1528-896X | |
| tree | Journal of Offshore Mechanics and Arctic Engineering:;1997:;volume( 119 ):;issue: 002 | |
| contenttype | Fulltext |