YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Field Verification of Linear and Nonlinear Hybrid Wave Models for Offshore Tower Response Prediction

    Source: Journal of Offshore Mechanics and Arctic Engineering:;1997:;volume( 119 ):;issue: 003::page 158
    Author:
    A. T. Couch
    ,
    J. P. Conte
    DOI: 10.1115/1.2829063
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Accuracy of the prediction of the dynamic response of deepwater fixed offshore platforms to irregular sea waves depends very much on the theory used to determine wave kinematics. A common industry practice consists of using linear wave theory, which assumes infinitesimal wave steepness, in conjunction with empirical wave stretching techniques to provide a more realistic representation of near-surface water kinematics. The current velocity field is then added to the wave-induced fluid velocity field and the wave-and-current forces acting on the structure are computed via Morison’s equation. The first objective of this study is to compare the predicted responses of Cognac, a deepwater fixed platform, obtained from several popular empirical wave models with the response Cognac predicted based on the hybrid wave model. The latter is a recently developed higher-order, and therefore more accurate, wave model which satisfies, up to the second-order in wave steepness, the local mass conservation and the linear free surface boundary conditions at the instantaneous wave surface. The second objective of this study is to correlate the various analytical response predictions with the measured response of Cognac. Availability of a set of oceanographic and structural vibration data for Cognac provides a unique opportunity to evaluate the prediction ability of traditional analytical models used in designing such structures. The results of this study indicate that (i) the use of the hybrid wave model provides predicted platform response time histories which overall are in better agreement with the measured response than the predictions based on the various stretched linear wave models; and (ii) the Wheeler stretching technique produces platform response time histories which overall are more accurate than those obtained by using the other stretching schemes considered here.
    • Download: (876.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Field Verification of Linear and Nonlinear Hybrid Wave Models for Offshore Tower Response Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/119189
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorA. T. Couch
    contributor authorJ. P. Conte
    date accessioned2017-05-08T23:54:23Z
    date available2017-05-08T23:54:23Z
    date copyrightAugust, 1997
    date issued1997
    identifier issn0892-7219
    identifier otherJMOEEX-28119#158_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/119189
    description abstractAccuracy of the prediction of the dynamic response of deepwater fixed offshore platforms to irregular sea waves depends very much on the theory used to determine wave kinematics. A common industry practice consists of using linear wave theory, which assumes infinitesimal wave steepness, in conjunction with empirical wave stretching techniques to provide a more realistic representation of near-surface water kinematics. The current velocity field is then added to the wave-induced fluid velocity field and the wave-and-current forces acting on the structure are computed via Morison’s equation. The first objective of this study is to compare the predicted responses of Cognac, a deepwater fixed platform, obtained from several popular empirical wave models with the response Cognac predicted based on the hybrid wave model. The latter is a recently developed higher-order, and therefore more accurate, wave model which satisfies, up to the second-order in wave steepness, the local mass conservation and the linear free surface boundary conditions at the instantaneous wave surface. The second objective of this study is to correlate the various analytical response predictions with the measured response of Cognac. Availability of a set of oceanographic and structural vibration data for Cognac provides a unique opportunity to evaluate the prediction ability of traditional analytical models used in designing such structures. The results of this study indicate that (i) the use of the hybrid wave model provides predicted platform response time histories which overall are in better agreement with the measured response than the predictions based on the various stretched linear wave models; and (ii) the Wheeler stretching technique produces platform response time histories which overall are more accurate than those obtained by using the other stretching schemes considered here.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleField Verification of Linear and Nonlinear Hybrid Wave Models for Offshore Tower Response Prediction
    typeJournal Paper
    journal volume119
    journal issue3
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.2829063
    journal fristpage158
    journal lastpage165
    identifier eissn1528-896X
    treeJournal of Offshore Mechanics and Arctic Engineering:;1997:;volume( 119 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian