YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurements in a Transitional Boundary Layer With Görtler Vortices

    Source: Journal of Fluids Engineering:;1997:;volume( 119 ):;issue: 003::page 562
    Author:
    R. J. Volino
    ,
    T. W. Simon
    DOI: 10.1115/1.2819281
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The laminar-turbulent transition process has been documented in a concave-wall boundary layer subject to low (0.6 percent) free-stream turbulence intensity. Transition began at a Reynolds number, Rex (based on distance from the leading edge of the test wall), of 3.5 × 105 and was completed by 4.7 × 105 . The transition was strongly influenced by the presence of stationary, streamwise, Görtler vortices. Transition under similar conditions has been documented in previous studies, but because concave-wall transition tends to be rapid, measurements within the transition zone were sparse. In this study, emphasis is on measurements within the zone of intermittent flow. Twenty-five profiles of mean streamwise velocity, fluctuating streamwise velocity, and intermittency have been acquired at five values of Rex , and five spanwise locations relative to a Görtler vortex. The mean velocity profiles acquired near the vortex downwash sites exhibit inflection points and local minima. These minima, located in the outer part of the boundary layer, provide evidence of a “tilting” of the vortices in the spanwise direction. Profiles of fluctuating velocity and intermittency exhibit peaks near the locations of the minima in the mean velocity profiles. These peaks indicate that turbulence is generated in regions of high shear, which are relatively far from the wall. The transition mechanism in this flow is different from that on flat walls, where turbulence is produced in the near-wall region. The peak intermittency values in the profiles increase with Rex , but do not follow the “universal” distribution observed in most flat-wall, transitional boundary layers. The results have applications whenever strong concave curvature may result in the formation of Görtler vortices in otherwise 2-D flows.
    keyword(s): Measurement , Boundary layers , Vortices , Turbulence , Flow (Dynamics) , Mechanisms , Reynolds number AND Shear (Mechanics) ,
    • Download: (891.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurements in a Transitional Boundary Layer With Görtler Vortices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/118884
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorR. J. Volino
    contributor authorT. W. Simon
    date accessioned2017-05-08T23:53:49Z
    date available2017-05-08T23:53:49Z
    date copyrightSeptember, 1997
    date issued1997
    identifier issn0098-2202
    identifier otherJFEGA4-27119#562_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/118884
    description abstractThe laminar-turbulent transition process has been documented in a concave-wall boundary layer subject to low (0.6 percent) free-stream turbulence intensity. Transition began at a Reynolds number, Rex (based on distance from the leading edge of the test wall), of 3.5 × 105 and was completed by 4.7 × 105 . The transition was strongly influenced by the presence of stationary, streamwise, Görtler vortices. Transition under similar conditions has been documented in previous studies, but because concave-wall transition tends to be rapid, measurements within the transition zone were sparse. In this study, emphasis is on measurements within the zone of intermittent flow. Twenty-five profiles of mean streamwise velocity, fluctuating streamwise velocity, and intermittency have been acquired at five values of Rex , and five spanwise locations relative to a Görtler vortex. The mean velocity profiles acquired near the vortex downwash sites exhibit inflection points and local minima. These minima, located in the outer part of the boundary layer, provide evidence of a “tilting” of the vortices in the spanwise direction. Profiles of fluctuating velocity and intermittency exhibit peaks near the locations of the minima in the mean velocity profiles. These peaks indicate that turbulence is generated in regions of high shear, which are relatively far from the wall. The transition mechanism in this flow is different from that on flat walls, where turbulence is produced in the near-wall region. The peak intermittency values in the profiles increase with Rex , but do not follow the “universal” distribution observed in most flat-wall, transitional boundary layers. The results have applications whenever strong concave curvature may result in the formation of Görtler vortices in otherwise 2-D flows.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeasurements in a Transitional Boundary Layer With Görtler Vortices
    typeJournal Paper
    journal volume119
    journal issue3
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.2819281
    journal fristpage562
    journal lastpage568
    identifier eissn1528-901X
    keywordsMeasurement
    keywordsBoundary layers
    keywordsVortices
    keywordsTurbulence
    keywordsFlow (Dynamics)
    keywordsMechanisms
    keywordsReynolds number AND Shear (Mechanics)
    treeJournal of Fluids Engineering:;1997:;volume( 119 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian