YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Unified Damage Approach for Predicting Forming Limit Diagrams

    Source: Journal of Engineering Materials and Technology:;1997:;volume( 119 ):;issue: 004::page 346
    Author:
    C. L. Chow
    ,
    M. Y. Demeri
    ,
    L. G. Yu
    DOI: 10.1115/1.2812269
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Plastic deformation in sheet metal consists of four distinct phases, namely, uniform deformation, diffuse necking, localized necking, and final rupture. The last three phases are commonly known as nonuniform deformation. A proper forming limit diagram (FLD) should include all three phases of the nonuniform deformation. This paper presents the development of a unified approach to the prediction of FLD to include all three phases of nonuniform deformation. The conventional method for predicting FLD is based on localized necking and adopts two fundamentally different approaches. Under biaxial loading, the Hill’s plasticity method is often chosen when α(=ε2 /ε1 ) <0. On the other hand, the M-K method is typically used for the prediction of localized necking when α > 0 or when the biaxial stretching of sheet metal is significant. The M-K method, however, suffers from the arbitrary selection of the imperfection size, thus resulting in inconsistent predictions. The unified approach takes into account the effects of micro-cracks/voids on the FLD. All real-life materials contain varying sizes and degrees of micro-cracks/voids which can be characterized by the theory of damage mechanics. The theory is extended to include orthotropic damage, which is often observed in extensive plastic deformation during sheet metal forming. The orthotropic FLD model is based on an anisotropic damage model proposed recently by Chow and Wang (1993). Coupling the incremental theory of plasticity with damage, the new model can be used to predict not only the forming limit diagram but also the fracture limit diagram under proportional or nonproportional loading. In view of the two distinct physical phenomena governing the cases when α(=ε2 /ε1 ) < or α > 0, a set of instability criteria is proposed to characterize all three phases of nonuniform deformation. The orthotropic damage model has been employed to predict the FLD of VDIF steel (Chow et al, 1996) and excellent agreement between the predicted and measured results has been achieved as shown in Fig. 1. The damage model is extended in this paper to examine its applicability and validity for another important engineering material, namely aluminum alloy 6111-T4.
    keyword(s): Plasticity , Deformation , Steel , Aluminum alloys , Sheet metal , Sheet metal work , Fracture (Process) , Microcracks , Necking AND Rupture ,
    • Download: (852.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Unified Damage Approach for Predicting Forming Limit Diagrams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/118755
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorC. L. Chow
    contributor authorM. Y. Demeri
    contributor authorL. G. Yu
    date accessioned2017-05-08T23:53:36Z
    date available2017-05-08T23:53:36Z
    date copyrightOctober, 1997
    date issued1997
    identifier issn0094-4289
    identifier otherJEMTA8-26988#346_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/118755
    description abstractPlastic deformation in sheet metal consists of four distinct phases, namely, uniform deformation, diffuse necking, localized necking, and final rupture. The last three phases are commonly known as nonuniform deformation. A proper forming limit diagram (FLD) should include all three phases of the nonuniform deformation. This paper presents the development of a unified approach to the prediction of FLD to include all three phases of nonuniform deformation. The conventional method for predicting FLD is based on localized necking and adopts two fundamentally different approaches. Under biaxial loading, the Hill’s plasticity method is often chosen when α(=ε2 /ε1 ) <0. On the other hand, the M-K method is typically used for the prediction of localized necking when α > 0 or when the biaxial stretching of sheet metal is significant. The M-K method, however, suffers from the arbitrary selection of the imperfection size, thus resulting in inconsistent predictions. The unified approach takes into account the effects of micro-cracks/voids on the FLD. All real-life materials contain varying sizes and degrees of micro-cracks/voids which can be characterized by the theory of damage mechanics. The theory is extended to include orthotropic damage, which is often observed in extensive plastic deformation during sheet metal forming. The orthotropic FLD model is based on an anisotropic damage model proposed recently by Chow and Wang (1993). Coupling the incremental theory of plasticity with damage, the new model can be used to predict not only the forming limit diagram but also the fracture limit diagram under proportional or nonproportional loading. In view of the two distinct physical phenomena governing the cases when α(=ε2 /ε1 ) < or α > 0, a set of instability criteria is proposed to characterize all three phases of nonuniform deformation. The orthotropic damage model has been employed to predict the FLD of VDIF steel (Chow et al, 1996) and excellent agreement between the predicted and measured results has been achieved as shown in Fig. 1. The damage model is extended in this paper to examine its applicability and validity for another important engineering material, namely aluminum alloy 6111-T4.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Unified Damage Approach for Predicting Forming Limit Diagrams
    typeJournal Paper
    journal volume119
    journal issue4
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.2812269
    journal fristpage346
    journal lastpage353
    identifier eissn1528-8889
    keywordsPlasticity
    keywordsDeformation
    keywordsSteel
    keywordsAluminum alloys
    keywordsSheet metal
    keywordsSheet metal work
    keywordsFracture (Process)
    keywordsMicrocracks
    keywordsNecking AND Rupture
    treeJournal of Engineering Materials and Technology:;1997:;volume( 119 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian