YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On Nonlinear Normal Modes of Systems With Internal Resonance

    Source: Journal of Vibration and Acoustics:;1996:;volume( 118 ):;issue: 003::page 340
    Author:
    A. H. Nayfeh
    ,
    S. A. Nayfeh
    ,
    C. Chin
    DOI: 10.1115/1.2888188
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A complex-variable invariant-manifold approach is used to construct the normal modes of weakly nonlinear discrete systems with cubic geometric nonlinearities and either a one-to-one or a three-to-one internal resonance. The nonlinear mode shapes are assumed to be slightly curved four-dimensional manifolds tangent to the linear eigenspaces of the two modes involved in the internal resonance at the equilibrium position. The dynamics on these manifolds is governed by three first-order autonomous equations. In contrast with the case of no internal resonance, the number of nonlinear normal modes may be more than the number of linear normal modes. Bifurcations of the calculated nonlinear normal modes are investigated.
    keyword(s): Resonance , Manifolds , Shapes , Dynamics (Mechanics) , Equilibrium (Physics) , Bifurcation , Discrete systems AND Equations ,
    • Download: (546.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On Nonlinear Normal Modes of Systems With Internal Resonance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/117943
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorA. H. Nayfeh
    contributor authorS. A. Nayfeh
    contributor authorC. Chin
    date accessioned2017-05-08T23:52:07Z
    date available2017-05-08T23:52:07Z
    date copyrightJuly, 1996
    date issued1996
    identifier issn1048-9002
    identifier otherJVACEK-28832#340_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/117943
    description abstractA complex-variable invariant-manifold approach is used to construct the normal modes of weakly nonlinear discrete systems with cubic geometric nonlinearities and either a one-to-one or a three-to-one internal resonance. The nonlinear mode shapes are assumed to be slightly curved four-dimensional manifolds tangent to the linear eigenspaces of the two modes involved in the internal resonance at the equilibrium position. The dynamics on these manifolds is governed by three first-order autonomous equations. In contrast with the case of no internal resonance, the number of nonlinear normal modes may be more than the number of linear normal modes. Bifurcations of the calculated nonlinear normal modes are investigated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn Nonlinear Normal Modes of Systems With Internal Resonance
    typeJournal Paper
    journal volume118
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2888188
    journal fristpage340
    journal lastpage345
    identifier eissn1528-8927
    keywordsResonance
    keywordsManifolds
    keywordsShapes
    keywordsDynamics (Mechanics)
    keywordsEquilibrium (Physics)
    keywordsBifurcation
    keywordsDiscrete systems AND Equations
    treeJournal of Vibration and Acoustics:;1996:;volume( 118 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian