The Effect of Tip Clearance on a Swept Transonic Compressor RotorSource: Journal of Turbomachinery:;1996:;volume( 118 ):;issue: 002::page 230DOI: 10.1115/1.2836630Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: An experimental and numerical investigation of detailed tip clearance flow structures and their effects on the aerodynamic performance of a modern low-aspect-ratio, high-throughflow, axial transonic fan is presented. Rotor flow fields were investigated at two clearance levels experimentally, at tip clearance to tip blade chord ratios of 0.27 and 1.87 percent, and at four clearance levels numerically, at ratios of zero, 0.27, 1.0, and 1.87 percent. The numerical method seems to calculate the rotor aerodynamics well, with some disagreement in loss calculation, which might be improved with improved turbulence modeling and a further refined grid. Both the experimental and the numerical results indicate that the performance of this class of rotors is dominated by the tip clearance flows. Rotor efficiency drops six points when the tip clearance is increased from 0.27 to 1.87 percent, and flow range decreases about 30 percent. No optimum clearance size for the present rotor was indicated. Most of the efficiency change occurs near the tip section, with the interaction between the tip clearance flow and the passage shock becoming much stronger when the tip clearance is increased. In all cases, the shock structure was three dimensional and swept, with the shock becoming normal to the endwall near the shroud.
keyword(s): Compressors , Clearances (Engineering) , Rotors , Flow (Dynamics) , Shock (Mechanics) , Blades , Aerodynamics , Turbulence , Drops , Chords (Trusses) , Modeling AND Numerical analysis ,
|
Collections
Show full item record
contributor author | W. W. Copenhaver | |
contributor author | C. Hah | |
contributor author | A. R. Wadia | |
contributor author | E. R. Mayhew | |
date accessioned | 2017-05-08T23:51:57Z | |
date available | 2017-05-08T23:51:57Z | |
date copyright | April, 1996 | |
date issued | 1996 | |
identifier issn | 0889-504X | |
identifier other | JOTUEI-28651#230_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/117857 | |
description abstract | An experimental and numerical investigation of detailed tip clearance flow structures and their effects on the aerodynamic performance of a modern low-aspect-ratio, high-throughflow, axial transonic fan is presented. Rotor flow fields were investigated at two clearance levels experimentally, at tip clearance to tip blade chord ratios of 0.27 and 1.87 percent, and at four clearance levels numerically, at ratios of zero, 0.27, 1.0, and 1.87 percent. The numerical method seems to calculate the rotor aerodynamics well, with some disagreement in loss calculation, which might be improved with improved turbulence modeling and a further refined grid. Both the experimental and the numerical results indicate that the performance of this class of rotors is dominated by the tip clearance flows. Rotor efficiency drops six points when the tip clearance is increased from 0.27 to 1.87 percent, and flow range decreases about 30 percent. No optimum clearance size for the present rotor was indicated. Most of the efficiency change occurs near the tip section, with the interaction between the tip clearance flow and the passage shock becoming much stronger when the tip clearance is increased. In all cases, the shock structure was three dimensional and swept, with the shock becoming normal to the endwall near the shroud. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | The Effect of Tip Clearance on a Swept Transonic Compressor Rotor | |
type | Journal Paper | |
journal volume | 118 | |
journal issue | 2 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.2836630 | |
journal fristpage | 230 | |
journal lastpage | 239 | |
identifier eissn | 1528-8900 | |
keywords | Compressors | |
keywords | Clearances (Engineering) | |
keywords | Rotors | |
keywords | Flow (Dynamics) | |
keywords | Shock (Mechanics) | |
keywords | Blades | |
keywords | Aerodynamics | |
keywords | Turbulence | |
keywords | Drops | |
keywords | Chords (Trusses) | |
keywords | Modeling AND Numerical analysis | |
tree | Journal of Turbomachinery:;1996:;volume( 118 ):;issue: 002 | |
contenttype | Fulltext |