YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Technical Basis for the Extension of ASME Code Case N-494 for Assessment of Austenitic Piping

    Source: Journal of Pressure Vessel Technology:;1996:;volume( 118 ):;issue: 004::page 513
    Author:
    J. M. Bloom
    DOI: 10.1115/1.2842223
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In 1990, the ASME Boiler and Pressure Vessel Code for Nuclear Components approved Code Case N-494 as an alternative procedure for evaluating flaws in light water reactor (LWR) ferritic piping. The approach is an alternate to Appendix H of the ASME Code and allows the user to remove some unnecessary conservatism in the existing procedure by allowing the use of pipe specific material properties. The Code case is an implementation of the methodology of the deformation plasticity failure assessment diagram (DPFAD). The key ingredient in the application of DPFAD is that the material stress-strain curve must be in the format of a simple power law hardening stress-strain curve such as the Ramberg-Osgood (R-O) model. Ferritic materials can be accurately fit by the R-O model and, therefore, it was natural to use the DPFAD methodology for the assessment of LWR ferritic piping. An extension of Code Case N-494 to austenitic piping required a modification of the existing DPFAD methodology. Such an extension was made and presented at the ASME Pressure Vessel and Piping (PVP) Conference in Minneapolis (1994). The modified DPFAD approach, coined piecewise failure assessment diagram (PWFAD), extended an approximate engineering approach proposed by Ainsworth in order to consider materials whose stress-strain behavior cannot be fit to the R-O model. The Code Case N-494 approach was revised using the PWFAD procedure in the same manner as in the development of the original N-494 approach for ferritic materials. A lower-bound stress-strain curve (with yield stress comparable to ASME Code specified minimum) was used to generate a PWFAD curve for the geometry of a part-through wall circumferential flaw in a cylinder under tension and bending. Earlier work demonstrated that a cylinder under axial tension with a 50-percent flaw depth, 90 deg in circumference, and radius to thickness of 10, produced a lower-bound FAD curve. Validation of the new proposed Code case procedure for austenitic piping was performed using actual pipe test data. Using the lower-bound PWFAD curve, pipe test results were conservatively predicted (failure stresses were predicted to be 31.5 percent lower than actual on the average). The conservative predictions were attributed to constraint effects where the toughness values used in the predictions were obtained from highly constrained compact test specimens. The resultant development of the PWFAD curve for austenitic piping led to a revision of Code Case N-494 to include a procedure for assessment of flaws in austenitic piping.
    keyword(s): Pipes , ASME Standards , Stress-strain curves , Failure , Light water reactors , Cylinders , Tension , Stress , Hardening , Plasticity , Deformation , Pressure vessels , Materials properties , ASME Boiler and Pressure Vessel Code , Thickness , Toughness , Yield stress AND Geometry ,
    • Download: (453.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Technical Basis for the Extension of ASME Code Case N-494 for Assessment of Austenitic Piping

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/117531
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorJ. M. Bloom
    date accessioned2017-05-08T23:51:21Z
    date available2017-05-08T23:51:21Z
    date copyrightNovember, 1996
    date issued1996
    identifier issn0094-9930
    identifier otherJPVTAS-28370#513_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/117531
    description abstractIn 1990, the ASME Boiler and Pressure Vessel Code for Nuclear Components approved Code Case N-494 as an alternative procedure for evaluating flaws in light water reactor (LWR) ferritic piping. The approach is an alternate to Appendix H of the ASME Code and allows the user to remove some unnecessary conservatism in the existing procedure by allowing the use of pipe specific material properties. The Code case is an implementation of the methodology of the deformation plasticity failure assessment diagram (DPFAD). The key ingredient in the application of DPFAD is that the material stress-strain curve must be in the format of a simple power law hardening stress-strain curve such as the Ramberg-Osgood (R-O) model. Ferritic materials can be accurately fit by the R-O model and, therefore, it was natural to use the DPFAD methodology for the assessment of LWR ferritic piping. An extension of Code Case N-494 to austenitic piping required a modification of the existing DPFAD methodology. Such an extension was made and presented at the ASME Pressure Vessel and Piping (PVP) Conference in Minneapolis (1994). The modified DPFAD approach, coined piecewise failure assessment diagram (PWFAD), extended an approximate engineering approach proposed by Ainsworth in order to consider materials whose stress-strain behavior cannot be fit to the R-O model. The Code Case N-494 approach was revised using the PWFAD procedure in the same manner as in the development of the original N-494 approach for ferritic materials. A lower-bound stress-strain curve (with yield stress comparable to ASME Code specified minimum) was used to generate a PWFAD curve for the geometry of a part-through wall circumferential flaw in a cylinder under tension and bending. Earlier work demonstrated that a cylinder under axial tension with a 50-percent flaw depth, 90 deg in circumference, and radius to thickness of 10, produced a lower-bound FAD curve. Validation of the new proposed Code case procedure for austenitic piping was performed using actual pipe test data. Using the lower-bound PWFAD curve, pipe test results were conservatively predicted (failure stresses were predicted to be 31.5 percent lower than actual on the average). The conservative predictions were attributed to constraint effects where the toughness values used in the predictions were obtained from highly constrained compact test specimens. The resultant development of the PWFAD curve for austenitic piping led to a revision of Code Case N-494 to include a procedure for assessment of flaws in austenitic piping.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTechnical Basis for the Extension of ASME Code Case N-494 for Assessment of Austenitic Piping
    typeJournal Paper
    journal volume118
    journal issue4
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.2842223
    journal fristpage513
    journal lastpage516
    identifier eissn1528-8978
    keywordsPipes
    keywordsASME Standards
    keywordsStress-strain curves
    keywordsFailure
    keywordsLight water reactors
    keywordsCylinders
    keywordsTension
    keywordsStress
    keywordsHardening
    keywordsPlasticity
    keywordsDeformation
    keywordsPressure vessels
    keywordsMaterials properties
    keywordsASME Boiler and Pressure Vessel Code
    keywordsThickness
    keywordsToughness
    keywordsYield stress AND Geometry
    treeJournal of Pressure Vessel Technology:;1996:;volume( 118 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian