YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computation of Shortest Paths on Free-Form Parametric Surfaces

    Source: Journal of Mechanical Design:;1996:;volume( 118 ):;issue: 004::page 499
    Author:
    T. Maekawa
    DOI: 10.1115/1.2826919
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Computation of shortest paths on free-form surfaces is an important problem in ship design, robot motion planning, computation of medial axis transforms of trimmed surface patches, terrain navigation and NC machining. The objective of this paper is to provide an efficient and reliable method for computing the shortest path between two points on a free-form parametric surface and the shortest path between a point and a curve on a free-form parametric surface. These problems can be reduced to solving a two point boundary value problem. Our approach for solving the two point boundary value problem is based on a relaxation method relying on finite difference discretization. Examples illustrate our method.
    keyword(s): Computation , Boundary-value problems , Navigation , Naval architecture , Machining , Relaxation (Physics) AND Robot motion ,
    • Download: (885.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computation of Shortest Paths on Free-Form Parametric Surfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/117365
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorT. Maekawa
    date accessioned2017-05-08T23:50:58Z
    date available2017-05-08T23:50:58Z
    date copyrightDecember, 1996
    date issued1996
    identifier issn1050-0472
    identifier otherJMDEDB-27641#499_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/117365
    description abstractComputation of shortest paths on free-form surfaces is an important problem in ship design, robot motion planning, computation of medial axis transforms of trimmed surface patches, terrain navigation and NC machining. The objective of this paper is to provide an efficient and reliable method for computing the shortest path between two points on a free-form parametric surface and the shortest path between a point and a curve on a free-form parametric surface. These problems can be reduced to solving a two point boundary value problem. Our approach for solving the two point boundary value problem is based on a relaxation method relying on finite difference discretization. Examples illustrate our method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComputation of Shortest Paths on Free-Form Parametric Surfaces
    typeJournal Paper
    journal volume118
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.2826919
    journal fristpage499
    journal lastpage508
    identifier eissn1528-9001
    keywordsComputation
    keywordsBoundary-value problems
    keywordsNavigation
    keywordsNaval architecture
    keywordsMachining
    keywordsRelaxation (Physics) AND Robot motion
    treeJournal of Mechanical Design:;1996:;volume( 118 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian