YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Plant Identification From Leaves Using Quasi-Sensor Fusion

    Source: Journal of Manufacturing Science and Engineering:;1996:;volume( 118 ):;issue: 003::page 382
    Author:
    M. Shiraishi
    ,
    H. Sumiya
    DOI: 10.1115/1.2831041
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The method described here identifies plants by using a machine vision technique. This method achieves effective image detection independent of surrounding conditions, dimensionless image detection in each growth stage, and determination of the critical factor for discriminating individual plants. These are the fundamental factors for successful automatic thinning, cropping, weeding, and harvesting using intelligent agricultural robots. Color, aspect ratio, size, radius permutation in leaf profiles, complexity, and curvature are used to classify each plant. Effective discrimination is obtained by using a quasi-sensor fusion combined with a total occurrence range for decision making.
    keyword(s): Sensors , Industrial plants , Machinery , Robots AND Decision making ,
    • Download: (599.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Plant Identification From Leaves Using Quasi-Sensor Fusion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/117300
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorM. Shiraishi
    contributor authorH. Sumiya
    date accessioned2017-05-08T23:50:47Z
    date available2017-05-08T23:50:47Z
    date copyrightAugust, 1996
    date issued1996
    identifier issn1087-1357
    identifier otherJMSEFK-27280#382_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/117300
    description abstractThe method described here identifies plants by using a machine vision technique. This method achieves effective image detection independent of surrounding conditions, dimensionless image detection in each growth stage, and determination of the critical factor for discriminating individual plants. These are the fundamental factors for successful automatic thinning, cropping, weeding, and harvesting using intelligent agricultural robots. Color, aspect ratio, size, radius permutation in leaf profiles, complexity, and curvature are used to classify each plant. Effective discrimination is obtained by using a quasi-sensor fusion combined with a total occurrence range for decision making.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePlant Identification From Leaves Using Quasi-Sensor Fusion
    typeJournal Paper
    journal volume118
    journal issue3
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.2831041
    journal fristpage382
    journal lastpage387
    identifier eissn1528-8935
    keywordsSensors
    keywordsIndustrial plants
    keywordsMachinery
    keywordsRobots AND Decision making
    treeJournal of Manufacturing Science and Engineering:;1996:;volume( 118 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian